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ABSTRACT 

Modeling Central Nervous System Involvement in Acute Lymphoblastic Leukemia 

Stephen M. Akers 

Infiltration of the central nervous system (CNS) by leukemic blasts represents one of the 

problematic disease manifestations of acute lymphoblastic leukemia (ALL).  Modern 

prophylactic measures have decreased the rate of CNS involvement in ALL.  However, they 

produce adverse side effects, including cognitive dysfunction, seizures, and growth retardation, 

which have unique implications in pediatric patients that constitute the bulk of ALL cases.  While 

there has been significant research into how ALL cells are nurtured in sanctuary sites, such as 

the bone marrow, there is a paucity of literature reporting on the mechanisms through which 

ALL cells migrate into the CNS and how they interact with cellular constituents of the CNS to 

evade treatment in this unique sanctuary site.  To this end, the overall goals of the current body 

of work were to understand how ALL cells interact with human brain-derived microvascular 

endothelial cells (HBMEnd) and to understand how cellular constituents of the subarachnoid 

space of the CNS alter ALL cell response to chemotherapeutics routinely used in the 

prophylaxis of CNS leukemia. 

Using in vitro models, we investigated the interaction between ALL cells and HBMEnd to 

understand the functional significance of coincident VE-cadherin and PECAM-1 expression by 

ALL.  Based on our observation that induction of adhesion molecules that are typically 

increased subsequent to inflammation did not occur following interaction of ALL cells with 

endothelial cells, we explored adhesion molecules expressed constitutively by ALL cells that 

could enhance leukemic cell adhesion to HBMEnd.  Evaluation of primary ALL samples, 

including leukemic cells isolated from CSF, demonstrated that VE-cadherin and PECAM-1 are 

co-expressed on the tumor cell surface.  Based on the classical role of VE-cadherin and 

PECAM-1 mediating homotypic interactions between adjacent endothelial cells, we 

hypothesized that expression of these two proteins by ALL cells would enhance their interaction 
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with HBMEnd.  Using lentiviral-mediated expression of these two proteins and neutralization of 

protein function with specific antibodies, we demonstrated expression of VE-cadherin and 

PECAM-1 by ALL enhanced the adhesion of ALL to HBMEnd, while expression of PECAM-1 

enhanced ALL adhesion to, and migration through, HBMEnd. 

We also investigated the contribution of astrocytes, choroid plexus epithelial cells, and 

meningeal cells to alterations in leukemic cell survival during treatment with chemotherapeutics 

routinely used for the prophylaxis of CNS involvement in ALL.  As these cells from the CNS 

have been documented to express soluble factors and adhesion molecules similar to cells 

resident in the bone marrow that enhance the survival of ALL cells following chemotherapy 

treatment, we hypothesized that culture of ALL cells with cellular constituents of the 

subarachnoid space would promote ALL survival following exposure to cytarabine, 

dexamethasone, and methotrexate.  We demonstrated that ALL cells migrate towards 

chemotactic stimuli secreted by astrocytes, choroid plexus epithelial cells, and meningeal cells.  

Additionally, we documented the physical interaction of ALL cells with these three CNS-derived 

cell types. Finally, through the use of in vitro co-culture models, we showed that meningeal 

cells, choroid plexus epithelial cells, and astrocytes confer protection to ALL cells from 

chemotherapy-induced cell death using drugs typically found in CNS prophylactic regimens. 

The research described herein provides foundations for understanding how ALL cells 

interact with endothelial cells and cells of the subarachnoid space that would be important for 

invasion and survival in the CNS, respectively.  Furthermore, these studies serve as a 

springboard for further investigations into the mechanism used by ALL cells to infiltrate the CNS 

as well as investigations to elucidate the exact soluble factors and adhesion-mediated signaling 

events that enhance ALL survival in the CNS.  Ultimately, this work may improve our 

understanding of CNS involvement in ALL and may allow for the development of strategies to 

prevent CNS leukemia and minimize the need for treatment in this sensitive anatomical site 

where treatment-induced toxicity is of significant concern.  
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Infiltration of the central nervous system by leukemic blasts is a problematic disease 

manifestation of acute lymphoblastic leukemia 

 

Introduction and review of the literature  

1 
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Normal hematopoiesis and an introduction to acute lymphoblastic leukemia 

Hematopoiesis is the process through which all blood cells are formed.[1-3]  In post-

natal mammals, hematopoiesis occurs in the extravascular spaces of the bone marrow.[4, 5]  

Figure 1 shows that in this setting, hematopoietic stem cells (HSC) give rise to common myeloid 

progenitors (CMP) and common lymphoid progenitors (CLP).[2, 3, 6-12]  CMP differentiate into 

monocyte/granulocyte progenitors and megakaryocyte/erythroid progenitors eventually giving 

rise to monocytes, neutrophils, basophils, eosinophis, platelets, and erythrocytes, while CLP 

continue their differentiation to give rise to B-, T-, and NK cells.[7-11]  Normal B-cell 

lymphopoiesis is a highly regulated and predictable process that ultimately gives rise to 

terminally differentiated B-cells capable of antibody production.  As is summarized in Figure 2, 

this process proceeds from the CLP to pro-B cells, pre-B cells, immature B-cells, and mature B-

cells.[6, 13-16]  Each of these maturation events is associated with either change to heavy 

chain and light chain variable region genes, surface immunoglobulin expression, and/or 

alterations in the compliment of surface marker proteins.[6]  While this process occurs normally 

most of the time, leukemic transformation can occur, resulting in the accumulation of immature 

blast cells that have an enhanced capacity for self renewal and proliferation, lack the ability to 

differentiate into functional immune cells, and are resistant to apoptosis.[17]  The compilation of 

these characteristics results in a clonal expansion of malignant blasts and the clinical 

manifestations of acute lymphoblastic leukemia (ALL).[18] 

Acute lymphoblastic leukemia is diagnosed in approximately 4000 new patients every 

year in the United States.[17, 19]  Two-thirds of these cases will occur in children, making ALL 

the most common childhood malignancy; while in adults, ALL represents between 15% and 

20% of all leukemia.[19-21]  The incidence for ALL peaks between ages 2 and 5 with another 

elevation occurring after age 50.[17, 22]  ALL has been associated with occurring more 

frequently in Caucasians, in affluent societies, and in urban areas.[22]  Clinically, ALL manifests 

at presentation as constitutional symptoms, including fever, night sweats, and weight loss, 

2 
 



www.manaraa.com

coagulation disorders, such as easy bleeding or bruising, and fatigue.[22, 23]  Over the past five 

decades, great strides have been made in treating childhood ALL and patient survival has 

increased from a median of two months to an 80% cure rate for children with ALL.[17, 24-27]  

This dramatic increase in survival can be partly attributed to the use of prophylaxis against 

invasion of the central nervous system (CNS) by ALL, as well as intensification of systemic 

chemotherapy regimens.[19]  While the management of childhood ALL has greatly improved 

survival for children, adults diagnosed with ALL have a much poorer prognosis with a 30%-40% 

chance of cure.[24]  

Although the direct causes of leukemia are not known, there exists evidence to point to 

both environmental and genetic factors in the development of ALL.  Environmental exposure to 

chemicals such as benzene, exposure to high levels of radiation, or treatment with 

chemotherapeutic agents has been associated with increased risk of leukemia.  Additionally, 

infections by certain viruses, trisomy 21 (Down syndrome), and high birth weight have been 

associated with leukemia.  However, further research is needed to determine causal roles of 

any of these in leukemogenesis.[28] 

As was stated previously, leukemic blasts acquire enhanced capacity for self renewal 

and proliferation, lack the ability to differentiate into functional immune cells, and are resistant to 

apoptosis.[17]  Many of the molecular abnormalities that contribute to these characteristics have 

been investigated and provide greater insight into the development of leukemia.  These 

abnormalities generally fall into three main groups:  dysregulated expression of proto-

oncogenes, chromosomal translocations producing fusion proteins of transcription factors or 

proteins with kinase activity, and alterations in the number of chromosomes (ploidy).[17]  A 

translocation between chromosomes 9 and 22 (t(9;22), Philadelphia chromosome) is an 

example of one of these genetic alterations.[17]  This translocation results in fusion between a 

portion of the BCR gene and the ABL kinase proto-oncogene, which produces the fusion protein 

BCR-ABL.[17]  This fusion protein possesses constitutive kinase activity that alters cellular 
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signaling leading to enhanced proliferation, survival, and self-renewal of HSC.[17]  Other 

chromosomal translocations such as t(12;21) (TEL-AML) and t(4;11) (MLL-AF4) create fusion 

transcription factors that alter the expression of HOX genes, which are important for regulating 

HSC self-renewal, proliferation, and differentiation.[17, 29]   

In leukemia with t(12;21), the 5’ portion of TEL, an ETS family transcription factor, is 

fused to AML, which encodes the α-subunit of core binding factor (CBF).  Normally, CBF-α 

binds to DNA and associates with other transcriptional regulators, including histone acetylases, 

which induce conformational changes in chromatin enhancing the transcription of HOX genes.  

However, when fused to TEL, CBFα still binds to DNA, but is unable to interact with the other 

proteins of the transcriptional complex.  This results in inhibition of HOX gene transcription.  In 

contrast to repression of HOX gene expression by t(12;21), in leukemia harboring MLL fusion 

genes such as is seen in t(4;11), the expression of HOX genes is enhanced.  This is due to a 

gain-of function effect that occurs when the N-terminal portion of MLL, encoded on chromosome 

11, becomes fused to the C-terminal portion of other partners, such as AF4 in t(4;11). 

While these genetic changes can alter cellular functions of HSC, none is sufficient to 

induce ALL leukemic transformation in HSC alone.[17, 29]  The presence of chromosomal 

abnormalities is further ruled out as being solely responsible for leukemogenesis since 

screening of neonatal cord blood has shown that pre-leukemic clones with the t(12;21) have 

been found in 1% of newborn babies, which is a frequency 100 times higher than the incidence 

of ALL with this fusion gene in childhood.[29-31]  Additionally, t(9;22) has been detected in 

circulating cells of healthy people who never develop leukemia.[32-36]  Because of this, it is 

thought that other secondary mutations cooperate with the primary genetic alterations to 

produce leukemia.[17, 29]  Secondary mutations include, but are not limited to, FLT-3 

overexpression, expression of neurotrophin receptors, and alterations leading to functional 

inactivation of the retinoblastoma (Rb) and p53 pathways.[17, 37] 
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Because many of the genetic alterations found to contribute to leukemogenesis are 

common in ALL, in that they are found in blast cells of 60-70% of ALL patients, they have been 

used as prognostic indicators to stratify patients with ALL into groups predictive of risk of 

relapse.[19, 23, 38, 39]  Genetic alterations such as hyperdiploidy or t(12;21) generally place 

patients at low risk for relapse, while presence of the Philadelphia chromosome (t(9;22)) in any 

patients or MLL- gene rearrangements such as t(4;11), particularly in infants, place patients at 

high risk for relapse and poor disease outcomes.[19, 21, 22, 38-40]  Other clinical features are 

further used to stratify patients.  For example, age greater than 35 at diagnosis, high initial 

leukocyte count (>30 x 109/L), and failure to achieve the first complete remission by induction 

day 35 are poor prognostic indicators.[21, 24]  Together with these disease specific prognostic 

indicators, there are also anatomical sites, which are more difficult to treat when ALL is present 

in them.  The bone marrow is a well-established sanctuary site for ALL in which bone marrow 

stromal cells increase the survival of ALL during chemotherapy making it more likely for 

surviving leukemic blasts to contribute to disease relapse.[41, 42]  The microenvironment-

derived cues that promote this survival are discussed in a subsequent section.  Like bone 

marrow involvement, infiltration of the CNS by leukemic blasts represents another problematic 

disease manifestation and can contribute to relapse of disease and unfavorable prognosis.[40, 

43]  

Identification of these prognostic factors has led to use of risk-directed chemotherapy 

regimens to achieve optimal results in patients.[40]  Treatment of ALL occurs in three phases:  

induction, consolidation, and maintenance.[22, 23, 38, 44, 45]  Overarching these three phases 

is the use of CNS-directed prophylaxis, which will be discussed in detail in a subsequent 

section.[40]  Table 1 summarizes the chemotherapeutics used in each phase of treatment and 

their mechanism of action.  Induction therapy is administered over 4 to 6 weeks and is built on a 

backbone of glucocorticoids, vincristine, and asparaginase for low-risk pediatric ALL.[40, 46]  

Intermediate- and high-risk pediatric ALL patients and adult ALL patients also receive an 
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anthracycline such as daunorubicin.[22, 40]  The goal of induction therapy is to restore normal 

hematopoiesis by achieving complete remission defined morphologically as <5% blast cells in 

the bone marrow or molecularly as leukemic involvement of <0.01% of nucleated cells in the 

bone marrow.[40, 47]  As minimum residual disease (MRD), or the extent of remaining leukemic 

blasts following induction therapy, has the greatest prognostic significance, many investigators 

favor the molecular definition of remission.[38, 42, 47-51] In fact, patients with 1% blasts by 

MRD studies following induction therapy had outcomes as poor as patients who failed to 

achieve remission.[38, 40, 42, 47-49]  Using current treatment protocols, 90% of patients with 

ALL will achieve first remission.[24] 

Consolidation, or intensification, begins when normal hematopoiesis is restored.[40]  In 

the treatment of pediatric ALL, these regimens are adjusted to the specific leukemia subtype 

and risk group.[40]  These regimens typically include high-dose methotrexate, mercaptopurine, 

L-asparaginase, or a combination of a glucocorticoid, vincristine, L-asparaginase, and 

doxorubicin then thioguanine, cytarabine, and cyclophosphamide.[40]  In adult ALL, 

chemotherapeutics typically include cytarabine, methotrexate, and cyclophosphamide.[22]  

Following consolidation, maintenance therapy begins and lasts for approximately 2.5 years.[40]  

These regimens typically include low-dose methotrexate and mercaptopurine.[40] Tyrosine 

kinase inhibitors (TKI) that in part target Abl kinase such as Imatinib, Dasatinib, or Nilotinib are 

added for Philadelphia chromosome positive ALL.[40] 

While current treatment regimens have achieved success in establishing remission 

among most patients and have achieved survival rates greater than 80% in pediatric 

populations, MRD harbored in anatomic sanctuary sites can contribute to disease relapse and 

result in poor outcomes for patients with ALL.[17, 24-27, 42]  As stated previously, the bone 

marrow can serve as a sanctuary site protecting leukemic cells from chemotherapy induced 

death.[41, 42]  Many of the survival signals utilized by pre-B leukemic cells to evade apoptosis 

are provided by the same cell types that support normal hematopoiesis. 
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The bone marrow microenvironment: an anatomic sanctuary site for ALL cells 

 Hematopoietic bone marrow, or red marrow, is unique in its ability to provide the 

appropriate environment to nurture the survival, self-renewal, and asymmetric division of HSC 

that gives rise to all mature blood cells.[12, 52-56]  The idea of an HSC niche—a specific site 

where stem cells reside, self-renew, and produce progeny—was proposed by Schofield in 1978 

and since has been extensively experimentally demonstrated.[12, 57-63]  The HSC niches in 

the bone marrow are formed by specific supportive cells that provide both soluble factors and 

physical interactions for resident HSC.[12, 54-56]  Current understanding of the bone marrow 

recognizes two supportive niches:  the endosteal niche and the vascular niche.[12] 

 Located on the inner, or endosteal surface of bone, the endosteal niche is supported 

primarily by osteoblasts and fibroblastic bone marrow stromal cells (BMSC).[12, 64-67]  These 

cells, along with chondrocytes and adipocytes, are derived from mesenchymal stem cells 

(MSC).[12, 68-70]  In many models of hematopoiesis, the primary function of the endosteal 

niche is to maintain the pool of HSC by promoting quiescence.[12, 71-74]  This has been 

documented experimentally both in vitro and in vivo.[64-67, 75, 76]  Work by Visnjic and 

colleagues demonstrated that conditional ablation of osteoblasts in mice led to a loss in the 

number of lymphoid, erythroid, and myeloid progenitor cells, which was followed by a decrease 

in the number of HSC.[76]  Because the ablation of osteoblasts was conditional, the authors 

were able to restore bone marrow osteoblasts and demonstrated rescue of hematopoiesis in the 

bone marrow.[76]  Many of the signaling interactions that promote HSC survival at the endosteal 

niche have been defined experimentally.  Soluble factors such as SCF, Jag1, Ang1, and SDF-1 

(CXCL12) have been shown to activate cognate receptors on HSC, c-kit, Notch, Tie2, and 

CXCR4, respectively, to enhance HSC survival and alter the balance between HSC proliferation 

and quiescence.[12, 66, 67, 73, 77-81]  Additionally, adhesion-mediated signaling through N-

cadherin/N-cadherin interactions that alter β-catenin signaling, VCAM-1/VLA-4, 

CD44/hyaluronan, and integrin engagement of extracellular matrix (ECM) proteins including 
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fibronectin, type IV collagen, and laminin all contribute to HSC functions at the endosteal 

niche.[12, 68, 74, 82-85, 85, 86] 

 Located centrally in the bone marrow, the vascular niche is composed of sinusoidal 

endothelial cells.[12, 74, 87-92]  As models propose the endosteal niche to be the site 

promoting HSC quiescence, the vascular niche is the site with which maturing hematopoietic 

progenitor cells (HPC) interact as they prepare to egress from the bone marrow.[12, 63, 71-74, 

88, 93-95]  However, these niches are not mutually exclusive, as HSC can be supported by 

sinusoidal endothelial cells in vitro and have been detected adjacent to sinusoidal endothelial 

cells in vivo.[12, 63, 87]  Just as the endosteal niche is important for the support of 

hematopoiesis, work by Avecilla and colleagues demonstrated that ablation of the vascular 

niche endothelial cells using specific VE-cadherin neutralizing antibodies resulted in 

hematopoietic failure.[93]  Many of the soluble and physical factors, such as CXCL12 and 

VCAM-1, produced in the endosteal niche to support HSC function are also constitutively 

expressed by sinusoidal endothelial cells to support HPC function.[12, 80, 81, 85, 88, 93] 

 While the purpose of soluble factors and adhesion-mediated physical support provided 

by the endosteal and vascular niches is to promote normal hematopoiesis, these same 

interactions can be utilized by leukemic cells to evade apoptosis induced by chemotherapy.[74, 

96, 97]  Adhesion-mediated interactions between ALL expressed VLA-4, VLA-5, CD44, and VE-

cadherin and microenvironment-derived VCAM-1, fibronectin, hyaluronan, and VE-cadherin 

have been documented to promote ALL survival.[41, 74, 98-102]  Additionally, soluble factors 

such as CXCL12 that are constitutively expressed by osteoblasts, BMSC, and sinusoidal 

endothelial cells also serve to enhance ALL cell viability following chemotherapy treatment.[12, 

80, 81, 97, 103, 104]  Because of this, our laboratory and others continue to investigate 

microenvironment derived signals that promote the ALL survival that could lead to MRD in 

patients with ALL.  
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Involvement of the CNS in ALL 

 In addition to the bone marrow as a sanctuary site for ALL cells, involvement of the CNS 

represents another clinically challenging manifestation of the disease.[40, 43]  Leukemic cells 

can be found in the CNS at initial patient presentation or during disease relapse either as 

isolated CNS recurrence, concurrent CNS and bone marrow relapse, or relapse following bone 

marrow involvement.[105, 106]  Leukemic meningitis, or a diffuse infiltration of the subarachnoid 

space and meninges, is the most common manifestation of CNS involvement in ALL.[107]  Risk 

factors associated with the development of CNS leukemia include elevated serum levels of 

lactate dehydrogenase, hemoglobin, creatinine, alkaline phosphatase, and fibrinogen; high 

leukocyte counts; leukemic cells with a high proliferative index; T-cell or mature B-cell tumor 

immunophenotype; mediastinal mass; traumatic lumbar puncture; and genetic alterations such 

as hypodiploidy, t(1;19), t(4;11), and t(9;22).[21, 105, 108-119]  Symptoms in ALL patients that 

can allude to CNS involvement include headache, nausea/vomiting, loss of consciousness, 

changes in hearing or vision, numbness, and weakness.[105]  Diagnosis of CNS involvement 

has historically been performed by light microscopic examination of cerebrospinal fluid (CSF) 

cytospins from lumbar punctures.  However, recent studies have examined the use of magnetic 

resonance imaging (MRI), flow cytometric evaluation of cells found in the CSF, and polymerase 

chain reaction (PCR) of CSF for the diagnosis of CNS involvement in ALL.[112, 120-126]  

Together with the risk factors mentioned previously, the findings of CSF examination are used 

to stratify patients into three risk groups for the development of CNS leukemia:  CNS I for no 

leukemic blasts in the marrow, CNS II for <5 WBC/μL with blasts, and CNS III for ≥5 WBC/μL 

with blasts.[105, 106, 112, 115]  

Prior to institution of presymptomatic prophylaxis against CNS invasion by ALL in the 

early 1970s, 50-75% of patients who achieved complete remission relapsed with CNS 

involvement.[105, 111, 112, 127]  Currently, as many as 10% of patients present with CNS 

involvement and using current prophylactic regimens, less than 15% of patients with ALL will 
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relapse with CNS involvement.[21, 105, 112, 128-131]  In many studies, the estimated number 

is even lower approaching 2-6% of patients.[43, 105, 112, 132-137]  While this is a small 

fraction of the total population of ALL patients, of those patients that do relapse after achieving 

remission, 30-40% will have CNS involvement even using current prophylactic regimens.[43, 

105, 138-140]  ALL infiltration into this unique setting results in poor disease outcomes for adult 

patients and children who have received prior radiation therapy.[43, 105, 112]  In the recently 

reported international ALL clinical trial MRC UKALL XII/ECOG E2993, adult patients that had 

CNS involvement at diagnosis had a 10-year survival rate of 25% compared to 34% for patients 

without CNS involvement or unknown CNS involvement at diagnosis.[21]  Furthermore, of the 

patients who relapsed following the protocol regimen, 4% had CNS involvement and their 5-year 

overall survival rate was 0%.[141]  In a pediatric study reported in 2006, disease outcomes for 

74 children with isolated CNS relapse were evaluated.  Those patients whose initial remission 

lasted longer than 18 month had a 4-year event free survival rate of 77% compared to 51% for 

children whose remission was less than 18 months.[142] 

Because of the significant consequences of CNS involvement in ALL, current clinical 

trials are aimed at developing more effective chemotherapeutic regimens for patients at risk of 

CNS relapse and those who have CNS involvement.[43]  Current prophylactic regimens include 

intense chemotherapy, CSF-directed intrathecal chemotherapy, and/or cranial or craniospinal 

irradiation.[21, 105]  Cranial and crainiospinal irradiation are the oldest forms of prophylaxis for 

use in children and adults.[105, 143]  As was stated previously, presymptomatic prophylaxis 

against ALL infiltration of the CNS began in the early 1970’s with work by Simone and 

colleagues demonstrating a benefit for the use of radiotherapy in children with ALL.[105, 144]  

Since then, many clinical trials have been conducted to investigate using radiotherapy in 

conjunction with high dose systemic and/or intrathecal chemotherapeutic with drugs such as 

dexamethasone, methotrexate, and cytarabine.[108, 111, 112, 132-137, 145-150]   
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While these investigations have led to the use of prophylactic regimens that reduce the 

rate of CNS involvement in ALL, treatments targeted for action in the CNS produce unique 

toxicities.[20, 151]  The use of crainial/crainiospinal irradiation has been associated with 

formation of secondary neoplasms, neurocognitive dysfunction, and endocrinopathies such as 

sustained decreases in growth hormone levels.[105, 112, 152]  The use of high dose systemic 

dexamethasone is associated with behavioral problems, myopathy, osteopenia, and excessive 

weight gain.[105, 153]  Finally, high dose cytarabine and methotrexate treatment is associated 

with liver, cerebellar, and renal dysfunction; focal cognitive deficits; diarrhea; fever; mucositis; 

and rash.[105, 154-156]  Undesirable in their own right, there is recognition that these adverse 

effects can be even more detrimental given the preponderance of pediatric patients affected by 

ALL.  While the use of prophylactic regimens reduce the rate of CNS involvement in ALL, the 

implications of CNS directed therapeutic toxicities in a pediatric population, the persistence of 

CNS relapse in spite of prophylactic measures, and the dismal prognosis surrounding CNS 

relapse highlight the need to better understand the biology involved in the invasion of ALL into 

the CNS and in the survival of ALL cells in this unique sanctuary site.  To this end, the work 

presented herein focuses on interactions that promote ALL cell adhesion to and migration 

through brain microvascular endothelial cell layers, as a model of CNS invasion, and 

interactions between ALL cells and cellular elements of the subarachnoid space that promote 

ALL survival during chemotherapy treatment. 

 To begin modeling interactions of ALL with the CNS, it is important to have an 

understanding of the gross structures related to the protection and nourishment of the CNS.  

The CNS generally refers to the brain and spinal cord.  There are many layers, consisting of 

bone, connective tissue, and fluid that surround each of these organs to provide them protection 

from the outside environment. 

 The elements that compose the protective barriers of the CNS are the same for the brain 

and spinal cord and are discussed in the following text from the outermost layer inward.  Figure 
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3 demonstrates that the brain and spinal cord are encased by the skull and vertebra, 

respectively.[157]  Immediately below the periosteum is the first of three layers of protective 

membranous coverings, or meninges, the dura mater.[157]  The dura is composed of dense 

connective tissue.  Immediately below the dura mater is the second of the meninges, the 

arachnoid membrane.[157]  The arachnoid membrane serves as the outer boundary of the 

subarachnoid space, which is filled by CSF and contains the arteries that perfuse the brain.[157]  

CSF is produced within the ventricular system of the brain by choroid plexus.[157-159]  The 

secretory epithelia of the choroid plexus, which rests upon a highly vascularized stroma, 

produces CSF through the ultrafiltration of blood plasma and secretion of soluble factors.[157-

160]  The innermost layer of the protective coverings of the CNS, and final meningeal layer, is 

the pia mater.[157]  This delicate membrane adheres tightly to the surface of the brain and 

spinal cord, separating the parenchyma from the outside environment.[157]  Collectively, the 

arachnoid membrane and the pia mater are referred to as the leptomeninges.[157] 

 As stated previously, the arteries that perfuse the brain and spinal cord are located in the 

subarachnoid space and are surrounded by CSF.  The brain and spinal cord receive their blood 

supply from branches of the bilateral internal carotid and vertebral arteries.[157]  The small, 

terminal branches of the internal carotid and vertebral arteries eventually penetrate the 

parenchyma of the CNS where they form the capillary beds responsible for the transfer of 

oxygen and nutrients.[157]  The small penetrating arterioles are surrounded by a perivascular 

(Virchow-Robin) space that communicates freely with the CSF.[157, 161]  Venous drainage of 

the CNS is highly specialized.  Veins that drain the parenchyma of the CNS empty into dural 

venous sinuses—areas where the dura mater has folded back on itself creating a space into 

which blood drains.[157]  Eight principal dural venous sinuses join to empty into the jugular 

venous system. 

 The final elements to consider with respect to the protection of the unique environments 

that support the brain and spinal cord are two highly specialized barriers to permeability:  the 
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blood-brain-barrier (BBB) and the blood-CSF-barrier (BCSFB), which are depicted in Figure 

4.[162]  The BBB is responsible for isolating the parenchyma of the brain from general 

circulation and for regulating the movement of material from the blood to the brain.[157, 162]  

The BBB is composed of non-fenestrated microvascular endothelial cells joined together by 

relatively impermeable and highly developed tight and adherens junctions.[157, 160]  Tight 

junctions are composed of transmembrane proteins, including occludin and claudin-5, which 

interact homotypically with adjacent endothelial cells and are linked to the cytoskeleton through 

the ZO family of proteins.[163, 164]  The transmembrane proteins of adherens junctions, VE-

cadherin and PECAM-1, also bind homotypically to adjacent endothelial cells and are linked to 

the cytoskeleton through beta-catenin.[163]  Other cells, such as astrocytes and pericytes also 

interact with the endothelium to aid in the integrity of the barrier.[165]  Together these structures 

form the anatomical basis of the BBB, which restrict the paracellular migratory pathway for 

circulating cells into the CNS.[157, 162]   

 The BCSFB is located at the choroid plexus.  As stated previously, the choroid plexus 

consists of a highly vascularized stroma covered by choroid plexus epithelium (CPE).[157-160]  

The endothelial cells perfusing the choroid plexus stroma are fenestrated, meaning they 

possess small window-like openings that allow for easier migration of material from the 

vasculature.[157, 160]  Since this provides for little barrier function, the anatomic basis for the 

BCSFB is found at the CPE.[157, 160]  These cells are joined by tight junctions, much like the 

endothelial cells that compose the BBB.[157, 160]  It is these epithelial tight junctions that are 

responsible for the integrity of the BCSFB.[157, 160] 

Much of what is known about leukocyte migration into and survival in the CNS was 

discovered using the murine experimental autoimmune encephalomyelopathy model of human 

multiple sclerosis (MS).  In this model, mice are immunized with a myelin derived peptide in 

complete Freund’s adjuvant and Bordetella pertussis toxin and self-reactive T-and B-

lymphocytes, as well as monocytes, enter the CNS under inflammatory conditions.[157, 160]  
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As blood flows to the parenchyma of the CNS, there are three proposed models describing 

where leukocytes may exit the vasculature and penetrate the CNS:  extravasation through the 

fenestrated capillaries of choroid plexus and crossing the blood-CSF-barrier into the 

subarachnoid space, extravasation through the post-capillary venules of the leptomeninges into 

the subarachnoid space, and crossing the BBB into parenchymal perivascular spaces.[157, 161, 

166, 167]  These pathways are depicted in Figure 5.[157] 

The microvasculature in the stroma of the choroid plexus is lined by fenestrated 

endothelial cells, which provides decreased resistance to leukocyte extravasation.[157]  Once in 

the stroma, leukocytes proceed to the choroid plexus epithelium where they must cross the 

BCSFB.[157, 166]  Because of the lowered resistance in the vasculature of the choroid plexus, 

it is thought that extravasation here is likely to be physiologically relevant.[157]  Collaborating 

evidence for this is provided by a study by Carrithers and colleagues in which fluorescent-

labeled T-lymphocytes were injected into mice.  Two hours post injection, the fluorescent cells 

were demonstrated in the choroid plexus and meninges.[168]  The exact mechanism of 

penetration through the BCSFB remains unclear, however, several adhesion molecule 

interactions are suspected.  It has been shown that blocking PECAM-1 and P-selectin reduces 

leukocyte entry into the CNS.[157, 160]  Additionally, VCAM-1 and ICAM-1 may play a role in 

leukocyte migration in this setting as they are found on the surface of the choroid plexus 

epithelium.[157, 160, 169] 

In the second model of CNS entry, circulating leukocytes extravasate across meningeal 

post-capillary venules into the subarachnoid space.[157, 161, 166]  This model is supported by 

the work of Carrithers and colleagues described earlier where T-cells were found in the 

meninges.[168]  Additional studies under inflammatory conditions have documented the rolling 

of leukocytes on the vessel walls in the meninges.[170]  However, the exact mechanisms 

through which this occurs have yet to be defined though P-selectin and certain integrins are 

suspected of playing roles.[157] 
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While the transfer of leukocytes directly across the BBB to the perivascular spaces and 

subarachnoid space has been considered the most obvious point of entry into the CNS, the 

mechanisms involved remain to be demonstrated.[160]  Following this pathway, leukocytes are 

brought by way of the internal carotid arteries to the CNS microcirculation where they must 

cross the BBB to enter the subarachnoid space.[157, 161]  In healthy individuals, it is postulated 

that selectins are not involved in a traditional rolling and tethering model.  Rather, junctional 

adhesion molecules of the endothelial cells provide first arrest of circulating leukocytes.[166]  

When the endothelium is expressed to pro-inflammatory cytokines, such as TNF-α or LPS, cell 

surface expression of ICAM-1 and VCAM-1 is increased, providing the necessary receptors to 

interact with leukocyte expressed LFA-1 and VLA-4, respectively.[157]  This type of rolling 

process has been shown during inflammation using intravital microscopy.[157]  In Chapter 2 of 

the current work, we demonstrate that ALL cells express VE-cadherin and PECAM-1, two 

proteins that are also expressed by endothelial cells and function in the formation of endothelial 

cell adherens junction.  Furthermore, we investigate the contribution of ALL cell VE-cadherin 

and PECAM-1 to mediating the interaction between leukemia cells and brain derived 

microvascular endothelial cells as an in vitro model of the BBB. 

 If investigating the proteins that promote ALL cell interaction with brain microvascular 

endothelial cells represents one way to gain further insight into the involvement of the CNS 

during this disease, then a logical next step is to investigate the interactions between ALL cells 

and cellular elements of the subarachnoid space that may alter leukemic cell response to 

chemotherapy and allow for ALL survival in the CNS.  Three cell types that contribute to 

microenvironments of the subarachnoid space are choroid plexus epithelial cells, meningeal 

cells, and astrocytes.  Interestingly, these are the principal cell types with which ALL cells would 

immediately interact following the migratory routes into the CNS previously discussed.  As was 

true for the models used to inform the proposed migratory pathways for immune cell entry into 
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the CNS, the models used to shape our understanding of signals that mediate B-cell survival in 

the CNS are derived from inflammatory settings.  

In the first model of CNS invasion, circulating leukemic cells may enter the subarachnoid 

space via the choroid plexus.[157, 161, 166]  In this scenario, after extravasation through the 

fenestrated endothelium that perfuses the stroma of the choroid plexus, ALL cells would be 

poised to interact with choroid plexus epithelial cells.  As was discussed previously, these cells, 

which form the anatomical basis of the blood-CSF-barrier, produce the CSF that fills the 

subarachnoid space through the ultrafiltration of blood plasma and the secretion of soluble 

factors.[158, 159]  While no studies to date have investigated ALL response to defined signaling 

molecules expressed by choroid plexus epithelium, it is known that the choroid plexus 

epithelium constitutively expresses cell surface VCAM-1 and produces soluble factors including 

SDF-1 and VEGF.[159, 169, 171]  Many investigations have documented the importance of 

these factors in promoting adhesion, migration, and survival of ALL cells in the sanctuary site of 

the bone marrow and therefore may impact on similar functions of ALL cells in the CNS.[41, 

172, 173]  

 Inferring from the second proposed model of immune cell entry into the CNS, leukemic 

cells extravasating through the post-capillary venules of the meninges would be positioned to 

interact with meningeal fibroblasts.[157, 161, 166]  While most studies have documented these 

cells as composing the fibrous three layers of meninges that protect and encase the brain and 

spinal cord, several studies have documented specific functions of meningeal cells during brain 

development.[174, 175]  McGrath et. al. described SDF-1 expression in the pia mater layer of 

meninges.[176]  Further work by Zhu et. al., demonstrated that meningeal SDF-1 expression 

was required for proper migration of precerebellar neurons in the developing brains of 

mice.[174]  Interestingly, in the setting of MS, meninges have been shown to support the 

formation of B-cell lymphoid follicles—indicating that, like the bone marrow and secondary 

16 
 



www.manaraa.com

lymphoid organs, the meninges are able to provide the physical and soluble cues needed for B-

cell proliferation and survival.[177]   

Based on the final model of immune cell entry into CNS, circulating leukemic cells cross 

the BBB into parenchymal perivascular spaces, which communicate freely with the CSF-filled 

subarachnoid space and equilibrate with the interstitial fluid of the brain parenchyma.[157, 161]  

As was described earlier, the BBB is a complex anatomical structure composed of several cell 

types including endothelium, pericytes, and astrocytes.[157, 161, 162]  Astroctyes extend foot-

processes to encircle the vasculature of the CNS and aide in the regulation of BBB 

integrity.[162, 178]  Because of this close proximity to the vasculature, a leukemic cell invading 

through this route would likely interact with astrocytes.[178]  Astrocytes are a subset of glia and 

are the most abundant cells in the CNS.[161, 178]  Long regarded as the structural “glue” which 

held neurons together, evidence now demonstrates that astrocytes are active participants in the 

development and homeostatic maintenance of the CNS.[179-181]  Under physiologic 

conditions, astrocytes can support the proliferation, survival, and maturation of neurons and 

cells committed to neuronal differentiation.  Additionally, astrocytes have been shown to 

stimulate adult neurogenesis.[182]  These functions of astrocytes are mediated by the 

production of numerous growth factors and cytokines including, but not limited to NGF, BDNF, 

GDNF, CNTF, EGF, and HGF.[178, 180, 183]  

In addition to their physiologic role, astrocytes have been shown to be active participants 

in models of CNS inflammation and malignancy.  As was stated previously, much of what can 

be inferred about the interactions between malignant B-cells and astrocytes is informed from 

models that investigate the interaction of astrocytes with activated B-cells under 

autoinflammatory conditions.  During neuroinflammation associated with MS, astrocytes provide 

for a variety of signaling molecules that promote B-cell survival.[184]  Among these factors 

include physical engagement of B-cell VLA-4 and CD44 through VCAM-1 and hyaluronan, 

respectively; as well as secretion of CXCL12 (SDF-1), IL-6, IL-10, and BAFF.[167, 180, 185-
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187]  Many of these factors have been shown by our lab and others to promote the survival of 

pre-B ALL cells in the setting of the bone marrow microenvironment.[41, 172, 173]  Additionally, 

BAFF has been demonstrated by Kruzmbholz et. al. to be produced by astrocytes and 

upregulated during primary CNS lymphoma.[187]  Furthermore, work by Onda et. al. showed 

that the pre-B ALL cell lines REH and RS4;11 express the BAFF receptor and respond to 

BAFF.[188]   

Taken together, the known signaling molecules expressed by astrocytes and the known 

function of these molecules in the protection of pre-B ALL provide useful starting points for 

investigations of ALL cells interactions with astrocytes.  In Chapter 3 of the current work, we 

investigate the response of ALL cells to chemotherapy induced cell death using cytarabine (Ara-

C), dexamethasone (DEX), and methotrexate (MTX)—three drugs commonly found in ALL CNS 

prophylactic regimens.  Using in vitro co-culture models, we investigate how the interactions of 

ALL cells with astrocytes, choroid plexus epithelial cells, and meningeal cells alter the response 

of ALL cells to the chemotherapeutic agents. 

Collectively, the studies presented herein investigate the interaction of ALL cells with cell 

types relevant to two critical processes in the development of CNS leukemia—invasion of the 

CNS across vascular barriers and survival in the subarachnoid space of the CNS.  Ultimately, 

this work may improve our understanding of CNS involvement in ALL and may allow for the 

development of strategies to prevent CNS leukemia and minimize the need for treatment in this 

sensitive anatomical site where treatment-induced toxicity is of significant concern. 
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Treatment 
Phase Chemotherapeutic Classification Mechanism of Action

Induction 6-mercaptopurine Antimetabolite Incorporation into DNA and inhibition of DNA synthesis; Inhibition of de 
novo purine synthesis

Cyclophosphamide  Alkylating 
agent Production of intra- and interstrand DNA cross-links 

Cytarabine Antimetabolite Incorporation into DNA and inhibition of DNA synthesis 
Daunorubicin Anthracycline 

antitumor 
antibiotic 

Intercalation between DNA base pairs; Inhibition of topoisomerase II 
producing double-strand DNA breaks; Free radical formation 

Idarubicin Anthracycline 
antitumor 
antibioti  c

Intercalation between DNA base pairs; Inhibition of topoisomerase II 
producing double-strand DNA breaks

L-asparaginase Enzyme Hydrolysis of L-asparagine to aspartic acid resulting in depletion of L-
asparagine; Inhibition of protein synethesis 

Methotrexate Antimetabolite Inhibition of dihydrofolate reductase resulting in depletion of folates 
necessary for DNA synthesis

Prednisone Glucocorticoid Alteration of gene transcription 
Vincristine  Alkaloid 

(tubulin 
inhibitor) 

Inhibition of microtubule formation producing M phase arrest 

Consolidation 6-mercaptopurine Antimetabolite Incorporation into DNA and inhibition of DNA synthesis; Inhibition of de 
novo purine synthesis

Cyclophosphamide  Alkylating 
agent Production of intra- and interstrand DNA cross-links 

Cytarabine  Antimetabolite Incorporation into DNA and inhibition of DNA synthesis 
Daunorubicin Anthracycline 

antitumor 
antibiotic 

Intercalation between DNA base pairs; Inhibition of topoisomerase II 
producing double-strand DNA breaks; Free radical formation 

Methotrexate Antimetabolite Inhibition of dihydrofolate reductase resulting in depletion of folates 
necessary for DNA synthesis

Mitoxantrone Antitumor 
antibiotic Intercalation between DNA base pairs; Inhibition of topoisomerase II 

producing double-strand DNA breaks

Prednisone Glucocorticoid Alteration of gene transcription 
Vincristine Alkaloid 

(tubulin 
inhibitor) 

Inhibition of microtubule formation producing M phase arrest 

Maintenance 6-mercaptopurine Antimetabolite Incorporation into DNA and inhibition of DNA synthesis; Inhibition of de 
novo purine synthesis

Methotrexate Antimetabolite Inhibition of dihydrofolate reductase resulting in depletion of folates 
necessary for DNA synthesis

Prednisone Glucocorticoid Alteration of gene transcription
Vincristine Alkaloid 

(tubulin 
inhibitor) 

Inhibition of microtubule formation producing M phase arrest 

CNS 
Prophylaxis Cytarabine Antimetabolite Incorporation into DNA and inhibition of DNA synthesis 

Dexamethasone Glucocorticoid Alteration of gene transcription 
Methotrexate Antimetabolite Inhibition of dihydrofolate reductase resulting in depletion of folates 

necessary for DNA synthesis

 

 

Table 1.  Chemotherapeutics routinely used in the treatment of ALL and their mechanism 
of action.  
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Figure 1:  Hematopoiesis of bone cells and marrow stromal cells.  Figure 1 from:  Yin and 
Li. The stem cell niches in bone.  J. Clin. Invest. 2006; 116(5):1195-1201.[12] 
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Figure 2.  A summary of the development of human conventional B-lineage cells.  Figure 
7.45 from Janeway et.al. Immunobiology, 5th edition.  Chapter 7: The development and 

survival of lymphocytes.  2001.[16]  
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Figure 3.  Anatomical structures involved in the arterial supply of the CNS and the 
cerebrospinal fluid circulation.  Figure 1 from Ransohoff et.al. Three or more routes for 

leukocyte migration into the central nervous system.  Nature reviews Immunology. 2003; 
3:569-581.[157]  
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Figure 4.  Location of barrier sites in the CNS.  Figure 1 from Abbott et. al. Astrocyte-
endothelial interactions at the blood-brain barrier.  Nature reviews Neuroscience. 2006; 

7:41-53.[162]  
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Figure 5.  Afferent and efferent mechanisms of immune surveillance in the CNS.  Figure 2 
from Ransohoff et.al. Three or more routes for leukocyte migration into the central 

nervous system.  Nature reviews Immunology. 2003; 3:569-581.[157] 
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Abstract 

Objective.  Infiltration of the central nervous system (CNS) by leukemia is a problematic disease 

manifestation of acute lymphoblastic leukemia (ALL).  The mechanisms by which leukocytes 

interact with brain-derived microvasculature endothelial cells (HBMEnd) and enter the CNS are 

largerly derived from models of inflammation. However, our data indicate that ALL cells do not 

elicit an inflammatory phenotype by HBMEnd.  Our current investigation focuses on the 

contribution of the unique co-expression of VE-cadherin and PECAM-1 by ALL in mediating 

leukemic cell interactions with HBMEnd as an in vitro model of the blood-brain-barrier. 

Materials and Methods.  Primary ALL and ALL cell lines were evaluated for VE-cadherin and 

PECAM-1 expression.  Lentiviral-mediated transduction of VE-cadherin and PECAM-1 into REH 

cells and antibody neutralization of VE-cadherin and PECAM-1 in SUP-B15 cells was used to 

delineate the role of these two proteins in mediating ALL adhesion to and migration through 

HBMEnd monolayers. 

Results.  While cell line models indicate that VE-cadherin and PECAM-1 expression is found on 

the surface of Ph+ ALL, evaluation of primary ALL demonstrates that VE-cadherin and PECAM-

1 are expressed independent of Ph-status.  Expression of VE-cadherin and PECAM-1 by ALL 

enhanced the adhesion of ALL to HBMEnd, while expression of PECAM-1 enhanced ALL 

adhesion to, and migration through, HBMEnd. 

Conclusions.  Expression of VE-cadherin and PECAM-1 by ALL cells positions them to interact 

with HBMEnd.  By increasing our understanding of molecular mechanisms through which ALL 

cells gain entry into the CNS, new strategies may be designed to prevent leukemia cell entry 

into the CNS. 
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Introduction 

 Disease specific prognostic indicators, such as chromosomal translocations and other 

cytogenetic features, are used to stratify patients with ALL into risk groups for relapse and 

disease outcomes.[1]  In addition to disease specific prognostic indicators, there are also 

anatomical sites that are therapeutically challenging.  Relevant to the current study,  infiltration 

of the CNS by leukemic cells contributes to relapse of disease and predicts poor disease 

outcome.[2, 3]  Risk factors associated with the development of CNS leukemia include age with 

a higher incidence found in infants and young children, high leukocyte counts, and the presence 

of high-risk cytogenetics.[4]  At diagnosis, less than 5% of children and less than 10% of adults 

with ALL present with CNS involvement.  However, without prophylactic measures, as many as 

50%-75% of children and 33% of adults with ALL would develop CNS manifestations.[5]  The 

use of prophylaxis significantly decreases the rates of CNS involvement, but treatments 

targeted for action in the CNS produce unique toxicities including seizure, dementia, intellectual 

dysfunction, leukoencephalopathy, and growth retardations.[6, 7]  While prophylaxis reduces the 

rate of CNS involvement, the implications of CNS directed therapeutic toxicities in a pediatric 

population, the persistence of CNS relapse in some patients despite prophylactic measures, 

and the dismal prognosis surrounding CNS relapse highlight the need to better understand the 

biology involved in the communication between ALL cells and the CNS. 

 Circulating leukemic cells are carried by the internal carotid arteries or the vertebral 

arteries to the blood-brain-barrier (BBB), the interface of general circulation and the CNS.[8]  

The BBB, which serves to isolate the parenchyma of the brain from general circulation and to 

tightly regulate movement of material into and out of the CNS, has classically been regarded as 

the most logical site for immune cells to enter the CNS.[9]  The BBB is composed of 

microvascular endothelial cells joined together by relatively impermeable and highly developed 

tight and adherens junctions.[10, 11]  Tight junctions are composed of transmembrane proteins, 

including occludin and claudin-5, which interact homotypically with adjacent endothelial cells 
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and are linked to the cytoskeleton through the ZO family of proteins.[12, 13]  The 

transmembrane proteins of adherens junctions, VE-cadherin and PECAM-1, also bind 

homotypically to adjacent endothelial cells and are linked to the cytoskeleton through beta-

catenin.[14]  Together these structures form the anatomical basis of the BBB, which restrict the 

paracellular migratory pathway for circulating cells into the CNS.[15, 16] 

 Much of what is known about leukocyte migration into the CSN was discovered using the 

murine experimental autoimmune encephalomyelopathy model of human multiple sclerosis.  In 

this model, self-reactive T-and B-lymphocytes as well as monocytes enter the CNS under 

inflammatory conditions.[17]  Our data, however, indicate that the leukemic blasts of ALL do not 

induce the inflammatory phenotype of brain microvascular endothelial cells associated with 

classical extravasation.  Based on these observations we have investigated migration of ALL 

across monolayers of brain-derived microvascular endothelial cells, focusing on the contribution 

of ALL VE-cadherin and PECAM-1 expression. Through the use of lentiviral-mediated 

expression of these two proteins and neutralization of protein function with specific antibodies, 

we demonstrate that expression of VE-cadherin and PECAM-1 by ALL confers an advantage to 

the leukemic cells with respect to adhering to, and migrating through, human brain derived 

microvascular endothelial cell monolayers. 

 

Materials and Methods 

Cell culture 

 The ALL cell lines JM-1 (CRL-10423), REH (CRL-8286), and SUP-B15 (CRL-1929) were 

obtained from ATCC (Manassas, VA).  Nalm-27 cells were provided by the Fujisaki Cancer 

Center (Okayama, Japan).  Leukemic cells were maintained at a density of 1x106 cells/mL in 

Iscove’s DMEM (Mediatech, Manassas, VA) supplemented with 10% fetal bovine serum 

(Hyclone, Logan, UT), 2 mM l-glutamine (Mediatech), 0.05 μM 2-mercaptoethanol (Sigma-

Aldrich, St. Louis, Missouri), 100 U/mL penicillin (Sigma-Aldrich), and 0.1 mg/mL streptomycin 
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(Sigma-Aldrich).  Primary ALL cells included de-identified samples from leukaphoresis products, 

bone marrow aspirates, or cerebrospinal fluid as indicated.  Mononuclear lymphocytes were 

isolated from all primary samples using Accu-Prep Lymphocytes (Accurate Chemical & 

Scientific Corporation, Westbury, NY) according to the manufacturer’s instructions.  Positively 

selected peripheral blood CD19+ B-cells from a healthy donor were purchased from AllCells 

(Emeryville, CA).  Human brain-derived microvascular endothelial cells (HBMEnd) were 

obtained from Angioproteomie (Boston, MA) and maintained in complete EGM-2MV media 

(Lonza, Basel, Switzerland). 

Production of stable VE-cadherin and PECAM-1 expressing REH 

 Cloning of human VE-cadherin (CDH5) into pLenti6.2-DEST/V5 (Invitrogen, Carlsbad, 

CA), as well as generation of the pLenti6.2-DEST/V5 empty vector control has been reported 

previously.[18]  Human PECAM-1 full length cDNA in the pENTR vector was obtained from 

Invitrogen and cloned into pLenti6.2-DEST/V5 using Gateway cloning technology.  Production of 

lentiviral particles and titer determination in this system has been previously described.[19]  To 

generate REH cell lines stably expressing empty vector (REH VECT), VE-cadherin (REH 

CDH5), or PECAM-1 (REH PECAM1), cells were infected with the lentivirus particles with a 

multiplicity of infection of 1.  Clones stably expressing the genes of interest were selected by 

blasticidin (3 μg/mL) and gene expression was confirmed by real-time reverse transcriptase 

(RT) PCR and flow cytometry. 

Real-time RT-PCR 

 Total cellular RNA was isolated using the RNEasy RNA isolation kit (Qiagen, Valencia, 

CA).  Real-time RT-PCR was performed using 50 ng RNA per reaction according to the 

manufacturer’s specifications using the QuantiTech SYBR Green RT-PCR kit (Qiagen).  Primers 

specific for human CDH5 and PECAM1 were obtained from SABiosciences (Frederick, MD).  

Primers specific for the housekeeping gene PPIA were from Real Time Primers, LLC (Elkins 

Park, PA).  Samples were prepared in triplicate and analyzed using the Applied Biosystems 

42 
 



www.manaraa.com

7500 Real-time PCR system (Foster City, CA).  Relative gene expression was determined using 

the Comparative Ct method.[20] 

Antibodies 

 The following antibodies were used for flow cytometry, confocal microscopy, and 

western blot analysis:  rabbit IgG and mouse IgG1 isotypes (Southern Biotechnology 

Associates, Birmingham, AL), rabbit anti-human VE-cadherin (Axorra, San Diego, CA), mouse 

anti-human PECAM-1 (Santa Cruz Biotechnologies, Santa Cruz, CA), mouse anti-human 

GAPDH (Fitzgerald, Concord, MA) mouse anti-human ICAM-1 (R&D systems, Minneapolis, 

MN), and mouse anti-human VCAM-1 (BD Biosciences, San Jose, CA).  Alexa Fluor conjugated 

secondary antibodies were obtained from Invitrogen.  For neutralization experiments, mouse 

IgG1 isotype (Southern Biotechnology Associates), mIgG2a kappa (BD Pharmingen, San 

Diego, CA), mouse anti-human CD31 (PECAM-1, Ancell, Bayport, MN), and mouse anti-human 

VE-cadherin (clone BV9, Santa Cruz Biotechnologies) were utilized where indicated. 

Immunofluorescence, flow cytometry, and confocal microscopy 

 Flow cytometric detection of cell surface adhesion molecules was carried out by 

incubating 1x106 cells with primary antibody (1 μg) or matched isotype control on ice for 20 min, 

washing with 1X phosphate buffered saline (PBS), and incubating with a fluorochrome-labeled 

secondary antibody (1 μg) on ice for an additional 20 min.  Immunofluorescence was evaluated 

using the BD FACSCalibur flow cytometer and CellQuest Pro software (BD Biosciences).  Data 

were analyzed using WinMidi software version 2.8.  To determine expression and localization of 

proteins in HBMEnd, cells were grown to confluence on 0.2% gelatin coated glass coverslips.  

Samples were fixed in 4% paraformaldehyde and subsequently permeabilized with 0.5% Triton-

X-100 at room temperature for 15 min.  After blocking in 5% BSA/1X PBS, cells were incubated 

with primary antibody (1 μg) or matched isotype control antibody.  Samples were washed in 1X 

PBS and incubated with a fluorochrome-labeled secondary antibody (1 μg).  Coverslips were 
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mounted on glass slides using ProLong Gold plus DAPI (Invitrogen).  Confocal images were 

acquired using a Zeiss LSM510 confocal system connected to an AxioImage ZI microscope.  

The images were analyzed using the Zeiss LSM510 software (Carl Zeiss, Thornwood, NY).  

Images were prepared using Adobe Photoshop CS2 version 9.0.2 and Adobe Illustrator CS2 

version 12.0.1. 

Immunohistochemistry 

High-grade lymphoma biopsy samples were formalin-fixed and paraffin-embedded.  Five 

micron sections were stained using ducal breast carcinoma and tonsil as control tissue for VE-

cadherin and PECAM-1, respectively.  For the detection of VE-cadherin the primary antibody 

(mouse monoclonal anti-human VE-cadherin, clone BV6; Millipore Billerica, MA) was used at a 

dilution of 1:10 for 24 h.  For the detection of PECAM-1 the primary antibody (mouse 

monoclonal anti-human PECAM-1, clone JC/70A; Abcam Cambridge, MA) was applied at a 

dilution of 1:25 for 6 h.  The slides were then incubated with a conjugated secondary antibody 

and counterstained with hematoxylin. The slides were then analyzed using light microscopy and 

all images shown are 400x. 

Antibody neutralization of VE-cadherin and PECAM-1 

To inhibit the function of ALL expressed VE-cadherin and PECAM-1, Nalm-27 and SUP-

B15 cells (1x106 cells/mL)  were treated with (3 μg/mL) anti-VE-cadherin antibodies, anti-

PECAM-1 antibodies, or matched isotype controls for 15 min prior to the initiation of incubation 

with HBMEnd and antibody remained in cultures for the duration of functional assays. 

Leukemic cell adhesion assay 

 Leukemic cells were fluorescently labeled according to the manufacturer’s specification 

using CellTracker Green CMFDA (Invitrogen).  The fluorescently labeled cells (1x106 cells/mL in 

500 μL of complete culture media) were incubated with confluent HBMEnd monolayers for 15 

min (neutralization assay), 30 min, 1 h, or 4 h.  Following incubations, the culture media was 
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removed and wells were rinsed three times with 1X PBS.  Samples were collected by 

trypsinization and the number of adherent leukemic cells was determined by flow cytometry by 

counting the number of fluorescent events collected during 30 s of high flow rate.  Samples 

were evaluated in triplicate. 

Transendothelial migration assay 

 HBMEnd were grown to confluence on 0.2% gelatin coated polycarbonate inserts of a 

24-well transwell system (5 μm pore size, Corning, Lowell, MA).  Fluorescently labeled leukemic 

cells (1x106 cells/mL in 150 μL media) were added to the top chamber of the transwell and 

allowed to migrate through the HBMEnd layer toward media supplemented with 100 ng/mL 

CXCL12 for 4 h.  Samples were collected from the bottom chamber and were evaluated by flow 

cytometry.  Migration is expressed as the number of fluorescent positive events acquired during 

30 s of high flow rate.  Samples were evaluated in triplicate. 

Microarray analysis 

 Human extracellular matrix and adhesion molecule pathway-focused Hytube GEArrays 

and reagents were obtained from SABiosciences and used according to the manufacturer’s 

instructions.  RNA isolated from JM-1, REH, Nalm-27, and SUP-B15 cells was used to 

synthesize cDNA.  cDNA (3 μg) was used to produce biotin-labeled cRNA, which was 

hybridized with microarray membranes overnight.  The hybridized microarray membrane was 

incubated with alkaline phosphatase-streptavidin, followed by CDP-Star and subsequently 

exposed to x-ray film.  The resulting images were analyzed using GEArray Expression Analysis 

Suite 2.0.  Gene expression was normalized to GAPDH.  (GEO accession: GSE18516) 

Electric cell substrate impedance sensing (ECIS) 

 To evaluate changes in HBMEnd barrier function induced by ALL cells, ECIS assays 

were performed as described previously.[21]  Briefly, HBMEnd were grown to confluence on 

gelatin-coated 8-well-10-electrode ECIS cultureware (Applied BioPhysics, Troy, NY).  Two 
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hours prior to the assay, HBMEnd culture media was replaced with leukemic cell culture media.  

Baseline resistance readings were collected from the HBMEnd monolayer for 30 min.  REH, 

Nalm-27, or SUP-B15 cells were added to the HBMEnd monolayers at 1x106 cells/mL.  Addition 

of media alone served as a negative control, while addition of thrombin (4U/mL, Enzyme 

Research Laboratories, South Bend, IN).  Data were collected every 30 sec for 5 h and are 

indicated as resistance normalized to the initial resistance reading. 

Statistical analysis 

 Where appropriate statistical significance was determined using Student t test and 

indicates p<0.05. 

 

Results 

ALL cells do not elicit an inflammatory response by HBMEnd. 

To evaluate potential inflammation-induced phenotypic changes caused by endothelial 

cell exposure to leukemia cells, immunofluorescent staining to detect endothelial cell VCAM-1 

and ICAM-1 was performed.  Upon treatment of HBMEnd with TNF-α, a known inflammatory 

cytokine, VCAM-1 and ICAM-1 expression is increased on the surface of HBMEnd (Figure 1A).  

Exposure of HBMEnd to REH, Nalm-27, or SUP-B15 cells does not result in upregulation of cell 

surface VCAM-1 or ICAM-1.   

As alteration in endothelial barrier integrity is a component of inflammatory models, we 

performed ECIS experiments to determine whether exposure of HBMEnd to REH, Nalm-27, and 

SUP-B15 cells disrupted endothelial barrier function.  As expected, when HBMEnd are 

challenged with thrombin, a known vasoactive agent, barrier function as measured by 

normalized resistance decreases (Figure 1B, top).  However, following exposure of HBMEnd to 

ALL cell lines, resistance across the HBMEnd monolayer does not decrease (Figure 1B) 

implying that ALL cells do not overtly disrupt HBMEnd barrier function.  Taken together, these 
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data show that ALL cells do not induce classical inflammatory changes in the endothelial cells 

including upreguation of VCAM-1 and ICAM-1 and disruption of endothelial barrier integrity. 

ALL cells co-express the adherens junction proteins VE-cadherin and PECAM-1. 

 Previously published observations from our laboratory have indicated that Ph+ ALL cell 

lines express the adhesion molecule VE-cadherin, while Ph- ALL cell lines do not.[22]  The 

unique expression of this classical endothelial marker in a hematologic malignancy prompted us 

to further characterize the expression of adhesion molecules and extracellular matrix proteins by 

ALL cell lines.  Using a pathway-focused cDNA microarray, we compared the expression of 

extracellular matrix proteins and adhesion molecule genes between the Ph- ALL cell lines JM-1 

and REH and the Ph+ ALL cell lines Nalm-27 and SUP-B15.  Consistent with the pattern of VE-

cadherin expression in cell line models, another adherens junction protein, PECAM-1, was 

expressed to a greater extent by Nalm-27 and SUP-B15 than JM-1 or REH cells (Figure 2A).  

Gene expression results generated by the microarray were confirmed using real-time RT-PCR 

and cell surface immunofluorescent staining and demonstrate that VE-cadherin and PECAM-1 

are expressed by Nalm-27 and SUP-B15 cells (Figure 2B-C).   

While cell lines provide researchers with invaluable models for in vitro manipulations 

including gain-of-function and loss-of-function studies, we next sought to expand our 

understanding of VE-cadherin and PECAM-1 expression using primary ALL clinical samples.  

Primary ALL cells derived from leukaphoresis products and bone marrow aspirates were 

evaluated for VE-cadherin and PECAM-1 expression using real-time RT-PCR and cell surface 

immunofluorescent staining.  In contrast to expression patterns observed in cell line models, 

VE-cadherin and PECAM-1 are expressed on the surface of both Ph- ALL and Ph+ ALL patient 

samples (Figure 3A and B).  Flow cytometric evaluation of ALL cells derived from cerebrospinal 

fluid (CSF) demonstrates cell surface expression of VE-cadherin and PECAM-1 (Figure 3B).  

Peripheral blood CD19+ B-cells, which would be found in the circulation of healthy individuals, 

however, do not demonstrate cell surface VE-cadherin or PECAM-1 expression (Figure 3B).    
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Consistent with peripheral B-cells, high-grade B-cell lymphomas also lacked expression of VE-

cadherin and PECAM-1 (Figure 3C).  As adherens junction proteins interact homotypically, 

demonstrating the unique cell surface co-expression of VE-cadherin and PECAM-1 by ALL cells 

prompted us to hypothesize that the expression of these two proteins by ALL may enhance the 

interaction between leukemia cells and HBMEnd that also express VE-cadherin and PECAM-1 

(Figure 3D). 

Expression of VE-cadherin by ALL cells enhances leukemia cell adhesion to HBMEnd, 

while expression of PECAM-1 enhances leukemia cell adhesion to HBMEnd and tumor 

transendothelial migration.  

 To examine the contribution of VE-cadherin and PECAM-1 to mediating ALL cell 

interaction with HBMEnd, REH cells were transduced with the human VE-cadherin gene (REH 

CDH5), PECAM-1 gene (REH PECAM1), or empty vector control (REH VECT) using lentiviral-

mediated gene delivery.  Flow cytometric analysis of immunofluorescent staining in Figure 4 

demonstrates that transduction of REH cells with the VE-cadherin or PECAM-1 gene results in 

cell-surface expression of VE-cadherin or PECAM-1, respectively, while the empty vector 

control expresses neither protein.  To evaluate the role of VE-cadherin and PECAM-1 

expression in mediating ALL adhesion to HBMEnd, REH cells expressing VE-cadherin, 

PECAM-1, or the vector control were used in an adhesion assay.  Compared to the REH cells 

transduced with the empty vector, REH CDH5 and REH PECAM1 cells were better able to 

adhere to HBMEnd at each of the time points evaluated (Figure 5A).  In support of this, when 

Nalm-27 cells were treated with VE-cadherin (Figure 5B) or PECAM-1 (Figure 5C) neutralizing 

antibodies their ability to adhere to HBMEnd was decreased compared to cells treated with 

isotype control antibodies by 24.7% and 33.8%, respectively.  Treatment of SUP-B15 cells with 

neutralizing antibodies against VE-cadherin (Figure 5B) and PECAM-1 (Figure 5C) resulted in 

inhibition of adhesion by 26.6% and 27.4%, respectively.  Combining VE-cadherin and PECAM-

1 inhibition by treating Nalm-27 cells with both neutralizing antibodies only modestly reduced the 
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adhesion over single inhibition (38.9% vs. 24.7% and 33.8%, data not shown).  Interestingly, 

when these same cells were compared using a different functional readout, transendothelial 

migration (TEM), the REH PECAM1 cells were better able to cross HBMEnd monolayers than 

REH VECT or REH CDH5 cells (Figure 6A) and only neutralization of PECAM-1 was able to 

blunt SUP-B15 migration (Figure 6B).  Taken together these data suggest that the expression of 

VE-cadherin and PECAM-1 by ALL cells can enhance the ability of the tumor to interact with 

HBMEnd.  

 

Discussion 

In the current study, we investigated the interaction between ALL and HBMEnd, an in 

vitro model of the BBB, to understand the functional significance of coincident VE-cadherin and 

PECAM-1 expression by ALL.  In vitro models of the BBB have been used with success to 

elucidate mechanisms of immune cell and tumor cell adhesion to brain microvascular 

endothelial cells and TEM.[23-25]  Consistent with the phenotype of endothelial cells widely 

used to represent the BBB, the low passage HBMEnd used in our current studies express tight 

junction markers, including occludin, claudin-5, and ZO-1 (data not shown), as well as the 

adherens junction proteins VE-cadherin and PECAM-1.[26]  This particular model system, 

combined with lentiviral-mediated expression of VE-cadherin and PECAM-1 and the use of 

specific neutralizing antibodies for VE-cadherin and PECAM-1 elucidated the specific role of 

each of these proteins in mediating ALL cell interaction with HBMEnd. 

 It is recognized that, when compared with other hematologic malignancies such as acute 

non-lymphoblastic leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma, and AML, ALL is 

marked by more prevalent involvement of the CNS.[27-29]  As adhesion of a circulating 

leukemic cell to the endothelial cells that compose the BBB may represent the first step of 

invasion into the CNS and models of immune cell invasion of the CNS are derived from 

inflammatory settings, we first explored the role of inflammation in our model.  While exposure 
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of HBMEnd to TNF-α and thrombin increased ICAM-1 and VCAM-1 expression and disrupted 

endothelial barrier resistance as is seen in inflammation, respectively, exposure of HBMEnd to 

REH, Nalm-27, or SUP-B15 cells did not promote upregulation of HBMEnd ICAM-1 or VCAM-1 

and disrupt barrier function as measured by ECIS (Figure 1A and B).  Collectively, these 

observations suggest that interaction of ALL cells with HBMEnd may be distinct from signaling 

that is central to inflammatory dogma. 

  Based on our observation that induction of adhesion molecules that are typically 

increased subsequent to inflammation did not occur following interaction of ALL cells with 

endothelial cells, we explored adhesion molecules expressed constitutively by ALL cell lines that 

could enhance leukemic cell adhesion to HBMEnd.  Evaluation of primary ALL samples, 

including leukemic cells isolated from CSF, demonstrated that VE-cadherin and PECAM-1 are 

co-expressed on the tumor cell surface (Figure 3A and B) in contrast to high-grade B-cell 

lymphoma (Figure 3C) which was negative for both proteins of interest.  Several reports have 

documented that VE-cadherin and PECAM-1 are expressed early in normal B-cell development 

with both down-regulated through maturation.[30-32]  Therefore, while VE-cadherin and 

PECAM-1 may be expressed on healthy, or malignant, pro-pre-B lineage cells resident in the 

bone marrow, the only circumstance in which co-expression of these proteins would be 

expected in a peripherally circulating hematopoietic cell of comparable differentiation stage, pro- 

or pre-B, would be unique to patients with leukemia.  Subsequently, the circumstance in which 

co-expression of these proteins is likely to facilitate CNS infiltration of a hematopoietic cell in the 

circulation is quite limited and likely unique to malignant progenitor cells.  Consistent with earlier 

studies, we confirmed that these two proteins are not expressed on peripheral blood CD19+ B-

cells from a healthy donor and are not expressed by more mature B-cell neoplasm (Figure 3B 

and C).  The lack of co-expression of VE-cadherin and PECAM-1 on mature B lineage cells that 

are routinely in the periphery of healthy individuals again suggests the phenotype is restricted 

and does not represent a common mechanism by which healthy mature B-cells interact with 
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endothelial barriers.  Based on the classical role of VE- cadherin and PECAM-1 mediating 

homotypic interactions between adjacent endothelial cells, we hypothesized that expression of 

these two proteins by ALL cells would enhance their interaction with HBMEnd. 

 The expression of VE-cadherin in non-endothelial cells has been documented in fetal 

cytotrophoblast cells, as well as several cancers, where it is notably associated with an 

aggressive phenotype.[33-36]  Through the study of human placental development, Zhou et. al. 

described that as cytotrophoblasts differentiate, they adopt a vascular phenotype, which 

includes the expression of VE-cadherin.[37]  Subsequent studies by Bulla et. al. demonstrated 

that VE-cadherin was required for cytotrophoblast adhesion to and invasion into endothelial cell 

monolayers.  In the setting of cancer, work by Hendrix et. al. has shown that VE-cadherin is 

expressed by aggressive melanoma and that its expression contributes to vascular mimicry.[38]  

Of note then are the observations that aggressive melanoma and gestational trophoblastic 

neoplasia are marked by frequent CNS metastasis.[39, 40]   Concordant with the findings of 

Bulla et. al., forced expression of VE-cadherin in REH cells resulted in enhanced adhesion to 

HBMEnd, while neutralization of endogenous VE-cadherin resulted in diminished adhesion of 

Nalm-27 and SUP-B15 cells to HBMEnd (Figure 5). 

 Like VE-cadherin, the expression of PECAM-1 has also been documented during 

differentiation of cytotrophoblasts and development of the placenta.[41]  In a study by Bulla et. 

al., cytotrophoblast treatment with a neutralizing antibody to PECAM-1 resulted in modestly 

diminished adhesion to endothelial cells and decreased transendothelial migration.[42]  In 

addition to its role in normal physiology, the expression of PECAM-1 has been documented in 

various cancer models and has been implicated in mediating tumor cell adhesion to endothelial 

cells.[43, 44]  We also observed enhanced adhesion and transendothelial migration following 

lentiviral mediated expression of PECAM-1 in REH cells, while neutralization of PECAM-1 

resulted in diminished ALL adhesion and transendothelial migration (Figure 6).  These findings 
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are consistent with the documented necessity for PECAM-1 in mediating leukocyte 

transendothelial migration.[45-47]  

 In conclusion, we have demonstrated that subsets of ALL cells have the potential to 

express a unique combination of the adherens junction proteins, VE-cadherin and PECAM-1.  

Overexpression of VE-cadherin and PECAM-1 enhances the interaction of ALL cells with 

HBMEnd with VE-cadherin and PECAM-1 increasing adhesion and PECAM-1 augmenting 

adhesion and transendothelial migration.  Cancers having central nervous system involvement 

place patients at high risk for poor disease outcomes.  In the setting of ALL, implementation of 

CNS-directed prophylaxis, including chemotherapy and radiotherapy, dramatically enhanced 

patient survival, however not without associated toxicities.[6, 7, 48]  Therefore, understanding 

the molecular mechanisms through which ALL cells initially gain entry into the CNS remains 

invaluable for designing strategies to prevent leukemia cell entry into the CNS to minimize the 

need to treat aggressive leukemia in this unique anatomical site. 
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Figure legends 

Figure 1.  ALL does not elicit an inflammatory response by HBMEnd.  A.  HBMEnd were 

grown to confluence in 6-well plates and exposed to ALL co-culture (1x106 leukemia cells/mL), 

media (negative control) or TNF-α (100ng/mL) for 4h. Following treatment, leukemia cells were 

rinsed away and samples were collected, immunostained with antibodies to detect VCAM-1 or 

ICAM-1 (solid line) or matched isotype control (shaded histogram), and analyzed by flow 

cytometry.  B.   (Top panel) HBMEnd were grown to confluence on ECIS electrodes (8-well, 10 

electrode).  After collecting baseline resistance data for 30 min, leukemia cells (1x106 cells/mL), 

media negative control, or thrombin positive control (4U/mL) were added to each ECIS well. 

Resistance data were collected for a total of 5h and are normalized to the initial resistance 

reading for each condition.  (Bottom panel) Normalized resistance readings for each treatment 

are shown at discrete time points following addition of each condition.  Data are expressed as 

mean normalized resistance+SEM, N=3. 

Figure 2.  Ph+ ALL cell lines co-express cell-surface VE-cadherin and PECAM-1.  A.  RNA 

isolated from the Ph- ALL cell lines, JM-1 and REH, and the Ph+ ALL cell lines, Nalm-27 and 

SUP-B15, was evaluated by a pathway specific cDNA microarray focused on expression of 

human extracellular matrix proteins and adhesion molecules. For each gene evaluated, the 

gene expression map compares gene expression across the cell lines evaluated and shows low 

level gene expression in light green and high level gene expression in red.  B. (Top) RNA 

isolated from ALL cell lines was subject to real-time RT-PCR to confirm VE-cadherin and 

PECAM-1 expression. The expression level of VE-cadherin and PECAM-1 for each cell line is 

compared to the expression levels of JM-1 cells.  (Bottom) Gel electrophoresis of the PCR 

products demonstrates that VE-cadherin and PECAM-1 is expressed by Nalm-27 and SUP-B15 

cells with PPIA used as a loading control and HUVEC RNA used as a positive control.  C.  JM-

1, REH, Nalm-27, and SUP-B15 cells were evaluated for cell surface VE-cadherin and PECAM-
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1 expression by immunostaining and flow cytometric analysis (solid line represents specific 

primary antibody while shaded histograms represents the isotype matched control). 

Figure 3.  Primary ALL expresses cell surface VE-cadherin and PECAM-1.  A. RNA from 

leukemic cells isolated from leukaphoresis (Ph- ALL1, Ph- ALL 2, Ph- ALL 3, and Ph+ ALL 1) 

and bone marrow aspirates (Ph+ ALL 2, Ph+ ALL 3, and Ph+ ALL 4) was examined for VE-

cadherin and PECAM-1 expression by real-time RT-PCR.  RNA from REH and SUP-B15 cells 

was included as negative and positive controls, respectively.  Data are expressed as fold 

increase over the gene expression levels in REH cells.  B. Leukemic cells derived from bone 

marrow aspirates (Ph- ALL 4 and Ph+ ALL 5) and cerebrospinal fluid (CSF) as well as 

peripheral blood CD19+ B-cells from a healthy donor were evaluated for cell surface VE-

cadherin and PECAM-1 expression by immunostaining and flow cytometric analysis (solid line 

represents specific primary antibody while shaded histograms represents the isotype matched 

control).  C. High-grade B-cell lymphoma biopsy samples were evaluated for VE-cadherin and 

PECAM-1 expression by immunohistochemistry.  Samples were also stained with hematoxylin 

and eosin.  Photomicrographs were taken at 400x magnification.  D. HBMEnd grown to 

confluence on glass coverslips were fixed and immunostained to detect the adherens junction 

proteins VE-cadherin and PECAM-1.  Cell nuclei were stained using DAPI. 

Figure 4.  Lentiviral mediated transduction of human CDH5 or PECAM1 into REH cells 

results in surface expression of VE-cadherin and PECAM-1, respectively. REH VECT, 

REH CDH5, and REH PECAM-1 were immunostained with antibodies specific for VE-cadherin 

or PECAM-1 (solid lines) or matched isotype control antibodies (shaded histograms).  Samples 

were evaluated using flow cytometry. 

Figure 5.  ALL expression of VE-cadherin and PECAM-1 enhances leukemia cell adhesion 

to HBMEnd.  A. REH VECT, REH CDH5, and REH PECAM1 were labeled with CellTracker 

green dye then incubated HBMEnd for the indicated times. B and C. Nalm-27 and SUP-B15 

cells were labeled with CellTracker green dye then treated with neutralizing antibodies against 

58 
 



www.manaraa.com

VE-cadherin (B), PECAM-1 (C), or matched isotype control antibodies for 15 min.  Following this 

pretreatment, Nalm-27 and SUP-B15 cells were incubated with HBMEnd for 15 min.  Following 

incubation, non-adherent leukemia cells were removed and the remaining adherent population 

was recovered by trypsinization.  The number of adherent leukemic cells was determined using 

flow cytometry by collecting the number of fluorescently labeled events that occurred during 30 

s of high flow rate.  Data are expressed as mean number of adherent cells + standard error of 

the mean (SEM, N=3) and are representative of at least three independent experiments. 

*p<0.05 

Figure 6.  ALL expression of PECAM-1 promotes leukemia cell migration through 

HBMEnd monolayers. HBMEnd were grown to confluence on transwell inserts. A. REH VECT, 

REH CDH5, and REH PECAM1 were labeled with CellTracker green dye then added to the top 

chamber of the transwell system and allowed to migrate for 4h through the HBMEnd toward 

SDF-1 (100ng/mL). B. SUP-B15 cells were labeled with CellTracker green dye then treated with 

neutralizing antibodies against VE-cadherin, PECAM-1, or matched isotype control antibodies 

for 15 min.  Following this pretreatment the cells were added to the top chamber of the transwell 

system and allowed to migrate for 4h through the HBMEnd toward SDF-1.  Samples were 

collected and enumerated using flow cytometry by collecting fluorescently labeled events in 30 s 

of high flow rate.  Data are expressed as mean number of cells migrated + standard error of the 

mean (SEM, N=3) and are representative of at least three independent experiments. *p<0.05 
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Figure 1.  ALL does not elicit an inflammatory response by HBMEnd. 
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Figure 2.  Ph+ ALL cell lines co-express cell-surface VE-cadherin and PECAM-1.
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Figure 3.  Primary ALL expresses cell surface VE-cadherin and PECAM-1.
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Figure 4.  Lentiviral mediated transduction of human CDH5 or PECAM1 into REH cells 
results in surface expression of VE-cadherin and PECAM-1, respectively.
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Figure 5.  ALL expression of VE-cadherin and PECAM-1 enhances leukemia cell adhesion 
to HBMEnd.   
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Figure 6.  ALL expression of PECAM-1 promotes leukemia cell migration through 
HBMEnd monolayers. 
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Abstract 

Infiltration of the CNS by leukemic cells remains a problematic disease manifestation of acute 

lymphoblastic leukemia (ALL).  Prophylactic regimens for CNS leukemia including intrathecal 

chemotherapeutics have decreased CNS involvement in ALL, but are not without toxicities.  

Using co-culture models, we show that astrocytes, choroid plexus epithelial cells, and 

meningeal cells protect ALL cells from chemotherapy-induced cell death using drugs included in 

prophylactic regimens—cytarabine, dexamethasone, and methotrexate.  Understanding how 

ALL cells survive in the CNS remains invaluable for designing strategies to prevent CNS 

leukemia and minimizing the need for treatment in this sensitive anatomical site where 

treatment-induced toxicity is of significant concern. 
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Introduction 

Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 4000 new patients 

every year in the United States.[1]   Two-thirds of these cases will occur in children, making ALL 

the most common childhood malignancy.[1, 2]  Over the past five decades, great strides have 

been made in treating childhood ALL and patient survival has increased from a median of two 

months to an 80% cure rate for children with ALL.[1, 3] This dramatic increase in survival can be 

partly attributed to the use of presymptomatic prophylaxis against invasion of the central 

nervous system (CNS) by ALL, as well as intensification of systemic chemotherapy regimens.[1, 

3]   

 Prior to presymptomatic prophylaxis against CNS invasion by ALL, the majority of 

patients who achieved remission went on to experience CNS relapse.[3]  Risk factors 

associated with the development of CNS leukemia include age with a higher incidence found in 

infants and young children, high leukocyte counts, and the presence of high-risk cytogenetics 

including t(4;11) and t(9;22).[3, 4]  However, with current prophylactic regiments 5-10% of 

patients with ALL will experience CNS involvement.[1, 3, 5, 6]  Standard prophylaxis of CNS 

leukemia consists of intrathecal chemotherapy, high-dose systemic chemotherapy, and cranial 

or craniospinal irradiation.[3]  Intrathecal chemotherapeutic regimens often include the use of 

methotrexate, cytarabine, and a steroid, such as dexamethasone.[3-5] The use of prophylaxis 

decreases the rates of CNS relapse, but treatments targeted for action in the CNS produce 

unique toxicities including seizure, dementia, intellectual dysfunction, leukoencephalopathy, and 

growth retardations.[2, 7] While prophylaxis reduces the rate of CNS involvement, the 

implications of CNS directed therapeutic toxicities in a pediatric population, the persistence of 

CNS relapse in spite of prophylactic measures, and the dismal prognosis surrounding CNS 

relapse highlight the need to better understand the biology involved in the communication 

between ALL cells and the CNS. 
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 Leukemic meningitis, defined as a diffuse infiltration of the meninges and subarachnoid 

space by leukemic cells, is the most common form of CNS involvement in ALL.[8]  The 

subarachnoid space is a unique environment of the CNS bordered by two layers of meninges, 

the outer arachnoid membrane and the inner pia mater.[9]  Filling the subarachnoid space is 

cerebrospinal fluid (CSF) which is produced by the choroid plexus epithelial cells through the 

ultrafiltration of blood plasma and secretion of soluble factors.[10, 11]  Because of the restrictive 

nature of the blood-brain-barrier and the blood-CSF-barrier, the soluble milieu of the 

subarachnoid space is very different from that found in blood plasma.[11]  Also present in the 

subarachnoid space are the blood vessels that perfuse the parenchyma of the brain.  As these 

vessels penetrate the brain they are contacted by astrocyte foot processes, which aid in the 

regulation of blood-brain-barrier integrity.[12]  In the current study, we investigated the 

interactions between ALL cells and three cell types present in the subarachnoid space—human 

meningeal cells (HMC), human choroid plexus epithelial cells (HCPEpiC), and human 

astrocytes (NHA).  We demonstrate that ALL cells migrate towards chemotactic stimuli secreted 

by NHA, HCPEpiC, and HMC.  Additionally, we document the physical interaction of ALL cells 

with these three CNS-derived cell types. Finally, through the use of in vitro co-culture models, 

we show that HMC, HCPEpiC, and NHA confer protection to ALL cells from chemotherapy-

induced cell death using drugs typically found in CNS prophylactic regimens.  This novel model 

will provide the framework for additional studies that are necessary to develop innovative 

therapeutic strategies for eradication of leukemia resident in the CNS. 

 

Materials and Methods 

Cell culture and reagents 

 The ALL cell lines JM-1 (CRL-10423), REH (CRL-8286), RS4;11 (CRL-1873) and SUP-

B15 (CRL-1929) were obtained from ATCC (Manassas, VA).  Leukemic cells were maintained 

at a density of 1x106 cells/mL in Iscove’s DMEM (Mediatech, Manassas, VA) supplemented with 
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10% fetal bovine serum (Hyclone, Logan, UT), 2 mM l-glutamine (Mediatech), 0.05 μM 2-

mercaptoethanol (Sigma-Aldrich, St. Louis, Missouri), 100 U/mL penicillin (Sigma-Aldrich), and 

0.1 mg/mL streptomycin (Sigma-Aldrich).  Primary human meningeal cells (HMC) and human 

choroid plexus epithelial cells (HCPEpiC) were obtained from ScienCell (Carlsbad, CA) and 

maintained in complete fibroblast media and epithelial cell media, respectively (ScienCell).  

Normal human astrocytes (NHA) were obtained from Lonza (Basel, Switzerland) and 

maintained in astrocyte growth media (Lonza).  The chemotherapeutics cytosine β-D-

arabinofuranoside (cytarabine, Ara-C, Sigma-Aldrich), dexamethasone (DEX, Sigma-Aldrich), 

and methotrexate (MTX, Parenta Pharmaceuticals Yardley, PA) were maintained as 10mM 

stock solutions in Iscove’s DMEM complete media. 

Leukemic cell co-culture with HMC, HCPEpiC, and NHA 

 HMC, HCPEpiC, or NHA were grown to confluence in 96-well plates (Corning, Lowell, 

MA).  The media was removed and leukemia cells (1x106 cells/mL, 190 μL) were added.  

Leukemia cells were co-cultured with the adherent cell population for 24 h prior to addition of 

chemotherapeutics.  Co-culture continued throughout the course of chemotherapy treatment. 

Production of HMC, HCPEpiC, and NHA conditioned media 

 HMC, HCPEpiC, or NHA were grown to confluence on 10 cm petri dishes (Corning).  

The media was removed and replaced with Iscove’s DMEM complete media (7 mL).  This media 

was conditioned with soluble factors from the adherent cell population for 48 h.  For experiments 

investigating the contribution of HMC, HCPEpiC, or NHA soluble factors to ALL survival during 

chemotherapy treatment, ALL cells were pelleted by centrifugation and resuspended in Iscove’s 

DMEM complete media control or HMC-, HCPEpiC-, or NHA-conditioned media at a density of 

1x106 cells/mL. 

Glutaraldehyde fixation of HMC, HCPEpiC, and NHA 
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 To block the metabolic activity, and thereby secretion of soluble factors, of HMC, 

HCPEpiC, or NHA, while leaving surface proteins intact,  HMC, HCPEpiC, or NHA were grown 

to confluence in 96-well plates and fixed with glutaraldehyde.  The culture media was removed 

and cells were fixed for 5 minutes in glutaraldehyde (2% in PBS).  After washing the cells three 

times in 1X PBS and twice with complete growth media, the cultures were returned to the 

incubator overnight in complete growth media for thorough rinsing of glutaraldehyde. 

MTT viaibility assay 

MTT substrate (Thiazolyl Blue Tetrazolium Bromide, Sigma-Aldrich) was added to tumor 

cells or tumor cell co-cultures growing in 96-well plates (190 mL/well) at a final concentration of 

0.5 mg/mL and allowed to incubate at 37°C for 3 h.  Formed formazan crystals were dissolved 

by adding 100 μL of a solubilization solution to each well.  The solubilization solution contained 

N, N-Dimethylformamide (DMF, 50% v/v, Sigma-Aldrich) and sodium dedecyl sulfate (SDS, 

20% w/v, Sigma-Aldrich.  The 96-well plates were analyzed by measuring optical density at a 

wavelength of 562 nm using a μQuant Scanning Microplate Spectrophotometer (Biotek, 

Winooski, VT).  Data were analyzed using KC Junior software (version 1.41.8, Biotek).  Average 

optical densities were obtained from three technical replicates.  In each culture condition (i.e. 

media, NHA, HCPEpiC, or HMC) the optical density for each chemotherapy treated well was 

normalized to the average optical density of the media treated group.  To perform statistical 

analysis, log2 of each optical density was calculated.  From these values, mean log2(optical 

density) and standard error of the mean was calculated.  Paired Student t-tests were used to 

compare the effect of each culture condition on ALL survival during chemotherapy treatment to 

the media control culture condition.  Significance denoted by (*) indicates p<0.05. 
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Results 

ALL cell line response to Ara-C, DEX, and MTX is time dependent and differs by cell line. 

 To evaluate the effect of chemotherapeutics commonly used in the prophylaxis of CNS 

leukemia on ALL cell viability in vitro, REH and SUP-B15 cells were treated with Ara-C, DEX, 

and MTX at doses ranging from 1 μM to 1 mM.  Cell viability was determined using trypan blue 

exclusion counting following 24 h, 48 h, and 72 h of treatment.  Figure 1 summarizes the 

response of REH and SUP-B15 cells to Ara-C and MTX which is time dependent.  The effects of 

Ara-C and MTX on REH and SUP-B15 viability are not, however, dose dependent as similar 

maximum levels of cell death are observed across the dose range at each time point.  In 

contrast to the ability of Ara-C and MTX to induce cell death in both the REH and SUP-B15 

cells, DEX only induced a time-dependent cell death in SUP-B15 cells.  This finding is 

consistent with other reports of REH insensitivity to DEX treatment.[13]  Based on these data, 

all subsequent viability-based experiments utilized chemotherapeutics at a final concentration of 

1 μM and cell viability was determined following 48 h of treatment. 

ALL cells migrate toward NHA-, HCPEpiC-, and HMC-derived soluble factors and 

physically interact with cellular elements of the CNS. 

 Migration of ALL cells to supportive niches is required for ALL cells to be protected from 

the effects of chemotherapy by unique microenvironment cues.  To determine whether ALL cells 

could migrate toward chemotactic stimuli provided by cellular elements of the CNS, REH and 

SUP-B15 cells were allowed to migrate through a transwell system toward NHA-, HCPEpiC-, or 

HMC-conditioned media.  Media with no defined chemotactic stimulus served as a control for 

random migration.  Following 4h of migration, samples were collected from the bottom chamber 

of the transwell system and the number of migrated cells was enumerated by flow cytometry.  

As is shown in Figure 2A, both REH (left panel) and SUP-B15 (right panel) cells are better able 
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to migrate towards NHA-, HCPEpiC-, and HMC-conditioned media than towards the media 

control. 

 Once in a supportive niche, physical interactions between ALL cells and other cell types 

in that microenvironment can be important for mediating ALL response to chemotherapy.  Short-

term co-cultures (24 h) of the ALL cell lines, REH and SUP-B15 were established with NHA, 

HCPEpiC, and HMC to visually inspect ALL adhesion to the CNS derived cells.  Figure 2B 

demonstrates that in contrast to the media control group in which the leukemic cells are in 

suspension, both REH (left panel) and SUP-B15 (right panel) cells adhere to the NHA, 

HCPEpiC, and HMC layers.  Taken together these data demonstrate that ALL cells are poised 

to respond to both soluble factors and physical cues provided by cellular elements of the CNS. 

ALL cell co-culture with NHA, HCPEpiC, and HMC blunts chemotherapy-induced cell 

death. 

 We next determined whether interaction of ALL cells with cellular constituents of the 

subarachnoid space altered the response of ALL cells to chemotherapy.  Co-cultures between 

the ALL cell lines, JM-1, REH, RS4;11, and SUP-15, and NHA, HCPEpiC, and HMC were 

established for 24 h and subsequently treated with Ara-C, DEX, or MTX.  Culture and treatment 

of ALL cells in media alone served as control.  Following treatment, MTT assays were 

performed to determine the relative viability of the leukemic cells treated under each culture 

condition.  Figure 3A summarizes data suggesting that culture of ALL cells with NHA, HCPEpiC, 

or HMC promotes leukemic cells survival during treatment with Ara-C and MTX.  In addition, 

SUP-B15 cells, which are sensitive to DEX, have higher viability following DEX treatment when 

cultured in the presence of NHA, HCPEpiC, or HMC.  As an additional control, NHA, HCPEpiC, 

and HMC in culture alone were treated with Ara-C, DEX, and MTX.  As is shown in Figure 3B, 

these chemotherapeutics do not decrease NHA, HCPEpiC, or HMC viability at the doses we 

used to treat the leukemia cells in vitro. 
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NHA, HCEpiC, and HMC adhesion-mediated signaling alone does not offer protection to 

ALL cells during chemotherapy. 

 Having determined that co-culture of ALL cells with cellular elements of the CNS 

promoted ALL cell survival during treatment with chemotherapy, we evaluated the contribution 

of physical, adhesion-mediated signaling to leukemic cell survival during chemotherapy 

treatment.  To separate the physical-mediated interactions provided by NHA, HCPEpiC, and 

HMC from the cues provided by co-culture with living cells (adhesion-mediated and soluble 

factors), NHA, HCPEpiC, and HMC were rendered metabolically inactive by fixing them with 

glutaraldehyde as previously described.  Co-cultures between JM-1, REH, RS4;11, and SUP-15 

cells, and glutaraldehyde-fixedNHA, HCPEpiC, and HMC were established for 24 h then treated 

with Ara-C, DEX, or MTX.  Following treatment, MTT assays were performed to determine the 

relative viability of the leukemic cells treated under each culture condition.  Figure 4 shows data 

indicating that while culture of ALL cells with glutaradlehyde-fixed NHA, HCPEpiC, or HMC 

produces a statistically significant increase in leukemic cells survival during treatment with Ara-

C and MTX, the effect is modest and does not account for the degree of protection seen during 

culture of ALL cells with viable, metabolically active NHA, HCPEpiC, and HMC.  Likewise, SUP-

B15 cells cultured with glutaraldehyde-fixed NHA, HCPEpiC, and HMC have modestly higher 

viabilities than cells cultured in media alone following DEX treatment. 

NHA-, HCPEpiC-, and HMC-derived soluble factors promote ALL cell survival during 

chemotherapy treatment. 

 As adhesion-mediated signaling alone did not account for the degree of protection from 

chemotherapy induced cell death observed during co-culture of ALL cells with NHA, HCPEpiC, 

and HMC, we next evaluated the contribution of soluble factors to the protection of ALL during 

chemotherapy treatment.   JM-1, REH, RS4;11, and SUP-15 cells were cultured in media 

conditioned with soluble factors produced by NHA, HCPEpiC, or HMC for 24 h prior to 

chemotherapy treatment.  Ara-C, DEX, or MTX was then added to the leukemic cell cultures.  
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Culture and treatment of ALL cells in media alone served as control.  As is shown in Figure 5, 

culture of ALL cells in NHA-, HCPEpiC-, or HMC-conditioned media promotes leukemic cells 

survival during treatment with Ara-C and MTX.  Furthermore, SUP-B15 cells are more viable 

following DEX treatment when cultured in the presence of NHA-, HCPEpiC-, or HMC-derived 

soluble factors compared to treatment in media alone. 

 

Discussion 

 In the current study, we investigated the contribution of human astrocytes, choroid 

plexus epithelial cells, and meningeal cells to alterations in leukemic cell survival during 

treatment with chemotherapeutics routinely used for the prophylaxis of CNS involvement in ALL.  

In vitro models have long been used to understand the impact of microenvironments, such as 

the bone marrow, on ALL survival during chemotherapy exposure.  However to our knowledge, 

this is the first report documenting protection of ALL cell lines by cellular elements of the 

subarachnoid space within the CNS from Ara-C, DEX, and MTX.  Through the use of in vitro 

models, we have demonstrated that while adhesion-mediated signaling and soluble factors 

alone can enhance ALL survival following chemotherapy treatment, maximal leukemic cell 

viability is maintained through a combination of signaling pathways by co-culture of ALL cells 

with NHA, HCPEpiC, and HMC. 

 Very little is known about how ALL cells migrate into, and survive inside, the CNS.  Much 

of what can be inferred about this process comes from the experimental autoimmune 

encephalomyelitis model of multiple sclerosis (MS).  Through these models, three distinct 

pathways of immune cell invasion of the CNS have been proposed: crossing the blood-brain-

barrier (BBB) into parenchymal perivascular spaces, extravasation through the fenestrated 

capillaries of choroid plexus and crossing the blood-cerebrospinal fluid-barrier into the 

subarachnoid space, and extravasation through the post-capillary venules of the leptomeninges 

into the subarachnoid space.[9, 14-16]  In each of these proposed models, leukemic cells would 
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be immediately exposed to microenvironments composed, in part, by astrocytes (NHA), choroid 

plexus epithelial cells (HCPEpiC), or meningeal cells (HMC), respectively. 

 In the first model of CNS invasion, circulating leukemic cells cross the BBB into 

parenchymal perivascular spaces (Virchow-Robin spaces), which communicate freely with the 

CSF-filled subarachnoid space and equilibrate with the interstitial fluid of the brain 

parenchyma.[9, 15]  The BBB is a complex anatomical structure composed on several cell types 

including endothelium, pericytes, and astrocytes.[9, 12, 15]  Astroctyes extend foot-processes to 

encircle the vasculature of the CNS and aide in the regulation of BBB integrity.[12, 17]  Because 

of this close proximity to the vasculature, a leukemic cell invading through this route would likely 

interact with astrocytes.[17]  Astrocytes are a subset of glia and are the most abundant cells in 

the CNS.[15, 17]  Long regarded as the structural “glue” which held neurons together, evidence 

now demonstrates that astrocytes are active participants in the development and homeostatic 

maintenance of the CNS.[18-20]  Under physiologic conditions, astrocytes can support the 

proliferation, survival, and maturation of neurons and cells committed to neuronal differentiation.  

Additionally, astrocytes have been shown to stimulate adult neurogenesis.[21]  These functions 

of astrocytes are mediated by the production of numerous growth factors and cytokines 

including, but not limited to NGF, BDNF, GDNF, CNTF, EGF, and HGF.[17, 19, 22]  Of note, 

while the ALL cell lines used expressed the neurotrophin receptors TrkA, TrkB, TrkC, and 

p75NTR, addition of rNGF, rBDNF, and rNT-3 during chemotherapy treatment did not elicit 

protection of ALL cells (data not shown), suggesting other soluble cures are important in the 

CNS microenvironment. 

 In addition to their physiologic role, astrocytes have been shown to be active participants 

in models of CNS inflammation and malignancy.  As was stated previously, much of what can 

be inferred about the interactions between malignant B-cells and astrocytes is informed from 

models that investigate the interaction of astrocytes with activated B-cells under 

autoinflammatory conditions.  During neuroinflammation associated with MS, astrocytes provide 
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for a variety of signaling molecules that promote B-cell survival.[23]  Among these factors 

include physical engagement of B-cell VLA-4 and CD44 through VCAM-1 and hyaluronan, 

respectively; as well as secretion of CXCL12 (SDF-1), IL-6, IL-10, and BAFF.[16, 19, 24-26]  

Many of these factors have been shown by our lab and others to promote the survival of pre-B 

ALL cells in the setting of the bone marrow microenvironment.[27-29]  Additionally, BAFF has 

been demonstrated by Kruzmbholz et. al. to be produced by astrocytes and upregulated during 

primary CNS lymphoma.[26]  Furthermore, work by Onda et. al. showed that the pre-B ALL cell 

lines REH and RS4;11 express the BAFF receptor and respond to BAFF.[30]  Taken together, 

the known signaling molecules expressed by astrocytes and the known function of these 

molecules in the protection of pre-B ALL provide useful starting points for future investigations 

elucidating the  factors that mediate the survival advantage conferred to ALL cells by astrocytes 

documented in the current study. 

 Inferring from another proposed model of immune cell entry into the CNS, circulating 

leukemic cells may also enter the subarachnoid space via the choroid plexus.[9, 14, 15]  In this 

scenario, after extravasation through the fenestrated endothelium that perfuses the stroma of 

the choroid plexus, ALL cells would be poised to interact with choroid plexus epithelial cells.  

These cells, which form the anatomical basis of the blood-CSF-barrier, produce the CSF that 

fills that subarachnoid space through the ultrafiltration of blood plasma and the secretion of 

soluble factors.[10, 11]  While no studies to date have investigated ALL response to defined 

signaling molecules expressed by choroid plexus epithelium, it is known that the choroid plexus 

epithelium constitutively expresses cell surface VCAM-1 and produces soluble factors including 

SDF-1 and VEGF.[10, 31, 32]  Again, the importance of these factors in promoting adhesion, 

migration, and survival of ALL cells and provide a basis for understanding their role in mediating 

the protection of ALL from chemotherapy offered by choroid plexus epithelial cells.[27, 29, 33] 

 Based on the final model of immune cell entry into CNS, we would expect that leukemic 

cells extravasating through the post-capillary venules of the meninges would be positioned to 
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interact with meningeal fibroblasts.[9, 14, 15]  While most studies have documented these cells 

as composing the fibrous three layers of meninges that protect and encase the brain and spinal 

cord, several studies have documented specific functions of meningeal cells during brain 

development.[34, 35]  McGrath et. al. described SDF-1 expression in the pia mater layer of 

meninges.[36]  Further work by Zhu et. al., demonstrated that meningeal SDF-1 expression was 

required for proper migration of precerebellar neurons in the developing brains of mice.[34]  

Interestingly, in the setting of MS meninges have been shown to support the formation of B-cell 

lymphoid follicles—indicating that the meninges are able to provide the physical and soluble 

cues needed for B-cell proliferation and survival.[37]  Further investigation into the identity of 

these factors could provide an understanding as to the mechanisms involved in the protection of 

ALL cells from chemotherapy treatment provided by meningeal cells. 

The data presented in the current study of the CNS microenvironment demonstrated that 

ALL cells physically interact with and migrate towards three cellular elements of the 

subarachnoid space in the CNS—astrocytes, choroid plexus epithelial cells, and meningeal 

cells.  Furthermore, the interaction of ALL cells with these three cell types promotes ALL 

survival following exposure to chemotherapeutics routinely used in the prophylaxis of CNS 

leukemia.  This protection reaches maximal levels during direct co-culture.  However, both 

adhesion-mediated signaling and soluble factors enhance ALL survival. Cancers having central 

nervous system involvement generally place patients at high risk for poor disease outcomes.  In 

the setting of ALL, implementation of CNS-directed prophylaxis, including chemotherapy and 

radiotherapy, dramatically enhanced patient survival, however, not without associated toxicities. 

Many recent studies have aimed to identify risk-factors associated the development of CNS 

leukemia in efforts to tailor patient specific prophylactic regimens to prevent over-treatment or 

under-treatment.[3, 38, 39]  Therefore, understanding the molecular mechanisms through which 

ALL cells interact with the unique environment of the subarachnoid space remains invaluable for 
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designing strategies to prevent CNS leukemia and minimize the need to treat aggressive 

leukemia in this unique anatomical site. 
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Figure Legends 

Figure 1.  The ALL cell line response to Ara-C, DEX, and MTX is time dependent and cell 

line dependent.  REH and SUP-B15 cells were treated with Ara-C, DEX, or MTX at doses 

ranging from 1 μM to 1 mM.  Cell viability was determined by trypan blue exclusion counting 

following 24 h, 48 h, and 72 h of treatment.  Data are expressed as percent viable cells (mean + 

SEM, N=3). 

Figure 2.  ALL cells migrate toward NHA-, HCPEpiC-, and HMC-derived soluble factors 

and interact physically with NHA, HCPEpiC, and HMC.  A.  A chemotaxis assay was 

performed allowing REH and SUP-B15 cells to migrate from the top chamber of a transwell 

system to the bottom chamber towards media control or NHA-, HCPEpiC-, or HMC-conditioned 

media for 4 h.  Cells that had migrated through the transwell system were collected and 

enumerated using flow cytometry.  Data are expressed as number of migrated cells collected 

during 30 sec high flow rate (mean + SEM, N=3).  B.  REH and SUP-B15 cells (1x106 cells/mL) 

were culture in media or were co-cultured with NHA, HCPEpiC, or HMC for 24 h.  

Photomicrographs were taken of each culture condition at 100X magnification. 

Figure 3.  ALL cell co-culture with NHA, HCPEpiC, and HMC blunts chemotherapy-

induced death.  A.  JM-1, REH, RS4;11, and SUP-B15 cells (1x106 cells/mL) were cultured in 

media or were co-culture with NHA, HCPEpiC, or HMC for 24 h.  Cultures were then treated 

with Ara-C, DEX, or MTX at a final concentration of 1 μM or media control for 48 h.  Following 

treatment, MTT assay was performed and optical densities were determined using a microplate 

reader.  The optical density measurements for drug treatment groups were normalized to the 

media control for each culture condition.  Data are reported as relative viability (mean + SEM, 

N=3) compared to untreated control.  *p<0.05  B.  NHA, HCPEpiC, and HMC were treated with 

Ara-C, DEX, or MTX at a final concentration of 1 μM or media control for 48 h.  Following 
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treatment, MTT assay was performed.  Data are reported as relative viability (mean + SEM, 

N=3) compared to untreated control. *p<0.05 

Figure 4.  Co-culture of ALL cells on glutaraldehyde-fixed NHA, HCPEpiC, and HMC 

enhances leukemic cell survival during chemotherapy treatment.  JM-1, REH, RS4;11, and 

SUP-B15 cells (1x106 cells/mL) were cultured in media or were co-culture with glutaraldehyde-

fixed NHA, HCPEpiC, or HMC for 24 h.  Cultures were then treated with Ara-C, DEX, or MTX at 

a final concentration of 1 μM or media control for 48 h.  Following treatment, MTT assay was 

performed.  Data are reported as relative viability (mean + SEM, N=3).  *p<0.05 

Figure 5.  NHA-, HCPEpiC-, and HMC-derived soluble factors promote ALL cell survival 

during chemotherapy treatment.  JM-1, REH, RS4;11, and SUP-B15 cells (1x106 cells/mL) 

were cultured in media or were culture in conditioned media from NHA, HCPEpiC, or HMC 

cultures for 24 h.  Cultures were then treated with Ara-C, DEX, or MTX at a final concentration 

of 1 μM or media control for 48 h.  Following treatment, MTT assay was performed.  Data are 

reported as relative viability (mean + SEM, N=3).  *p<0.05 
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Figure 1.  The ALL cell line response to Ara-C, DEX, and MTX is time dependent and cell 
line dependent.   
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Figure 4.  Co-culture of ALL cells on glutaraldehyde-fixed NHA, HCPEpiC, and HMC 
enhances leukemic cell survival during chemotherapy treatment. 
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Figure 5.  NHA-, HCPEpiC-, and HMC-derived soluble factors promote ALL cell survival 
during chemotherapy treatment. 
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 Over the past half century, great strides have been made in the treatment of ALL.  This 

is well summarized in a report by Burchenal and colleagues from May 1951 examining the effect 

of folic acid antagonists on neoplastic diseases with a focus on acute leukemia.[1]  In their 

report of 88 acute leukemia cases, the authors documented “good remission” in 32% of 

childhood cases and just 2.6% of adult cases.[1]  What is most telling in this report is that there 

is no reference to overall survival or event-free survival as a percentage of the total population 

of patients, terms we often use today to discuss the findings of clinical trials.  Rather, the mean 

survival time of patients with acute leukemia was reported as 5.4 months from the start of 

therapy with a range of 1/30 of a month to 24 months and 8.2 months from the start of 

symptoms with a range of ¾ of a month to 27 months.[1]  This stands in stark contrast to current 

clinical trial findings that achieve greater than 90% complete remission rate and demonstrate 

that greater than 80% of pediatric ALL cases can be cured.[2, 3]  Much of this success can be 

attributed to the use of combined chemotherapy regimens, presymptomatic CNS prophylaxis, 

and intensive chemotherapy regimens for patients falling into high-risk subgroups.[4] 

 Many of the advances in treating ALL are, in part, made possible by the increased 

understanding of the biology of this type of hematopoietic cancer.  As was discussed at length in 

Chapter I, it is now appreciated that a series of cooperating genetic alterations must occur in 

order for leukemogenesis to occur.[5, 6]  Changes in total chromosome number, chromosomal 

translocations that create fusion genes and proteins with enhanced kinase activity (BCR-ABL) 

or altered transcriptional regulatory ability (TEL-AML1, MLL-AF4), and dysregulated expression 

of oncogenes and tumor suppressors cooperate with secondary mutations to change pathways 

which regulate cell self-renewal, proliferation, differentiation, and apoptosis.[4]  Understanding 

changes such as these has led to mechanistic insights such as the reason patients with 

hyperdiploid ALL respond well to methotrexate being that there are extra copies of chromosome 

21, which carries a gene that codes for a transporter that brings methotrexate into cells.[4]  In 

addition, understanding that the enhanced Abl kinase activity results from the t(9;22) 
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translocation, has led to target drug design producing the Abl kinase inhibitor, Imatinib 

mesylate.[2] 

 Furthermore, the advances in the treatment of ALL are in part due to investigations of 

how ALL interacts with, and responds to, the bone marrow microenvironment.  It is recognized 

that one of the best prognostic indicators in ALL is the degree to which leukemic blasts are 

cleared from the periphery and bone marrow during induction therapy.[3]  Minimal residual 

disease (MRD) harbored by anatomic sanctuary sites, such as the bone marrow, can contribute 

to patient relapse and is a poor prognostic indicator.[7-9]  Work performed by our lab and others 

has demonstrated that the bone marrow is a nurturing site for ALL, providing soluble factor cues 

and adhesion-mediated signaling that can enhance ALL survival following exposure to 

chemotherapeutics routinely used in induction regimens.[10-16]  Moving forward, it is the goal 

that the factors found to promote ALL survival in this setting may become targets for therapies 

designed to eliminate MRD from the marrow of patients with ALL.  Striking similarities exist 

between the marrow and other sites of tumor sanctuary, prompting our investigation of a model 

of the CNS. 

 Just as successes have been met in the treatment of ALL overall, the prevention of CNS 

leukemia has also increased in the last five decades.  As was discussed in Chapter I, before the 

routine use of presymptomatic prophylaxis against CNS involvement in ALL, as many as 75% of 

complete remissions ended in CNS relapse.[17-20]  The estimated survival for patients with 

untreated leukemic meningitis is 4-6 weeks.[21]  While little may be able to be done to alter the 

percentage of ALL patients presenting with CNS involvement at diagnosis, the use of modern 

prophylactic regimens has decreased the incidence of CNS relapse to approximately 5% of 

cases.[17, 18]  This remarkable result is due mostly to extensive clinical trials, many in pediatric 

populations, evaluating different treatment regimens.  The earliest of these regimens, which 

began in the early 1970’s, relied on cranial and/or craniospinal irradiation.[22]  Since that time, 
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irradiation has been combined with systemic and intrathecal chemotherapeutics to decrease the 

rate of CNS involvement in ALL.[17, 18] 

 While the use of CNS-directed prophylactic regimens has decreased the incidence of 

CNS involvement in ALL, they are associated with unique toxicities.  Adverse consequences 

that have been associated with CNS therapy include seizure, dementia, intellectual dysfunction, 

leukoencephalopathy, and growth retardations.[17, 18, 23-25]  Because of this, focus has been 

placed on identifying the risk factors associated with CNS involvement in ALL in effort to tailor 

the treatment directed at the CNS specifically for the patient.[17, 26]  Factors such as young 

age, high leukocyte counts, and the presence of high-risk cytogenetics including t(9;22) and 

t(4;11) coupled with the involvement of the CNS at diagnosis (i.e. CNS I, II, or III status) can 

place patients at higher risk for CNS leukemia.[17, 18]  It has been proposed, and now 

experimentally demonstrated, that cranial irradiation can be safely removed from the 

prophylactic regimens of pediatric patients from low-risk groups.[26]  It is the goal that this 

tailored therapy can maintain the advances made in decreasing the incidence of CNS leukemia, 

while diminishing the chance of adverse effects that have been associated with CNS-directed 

prophylactic regimens. 

 Just as there have been many successes in the treatment of ALL, there are also many 

areas in which improvement must occur to benefit patients with ALL.  While the survival rates in 

ALL have increased dramatically over the past five decades, this statement is usually qualified 

by explicitly stating pediatric ALL.  The cure rate for pediatric ALL exceeds 80% in most 

studies.[2]  In the recently reported MRC UKALL XII/ECOG E2993 study of 1521 adult (ages 15-

59) ALL patients, the overall survival at 5-years was 38%.[27]  The prognostic importance of 

age is partly a function of the frequency with which certain genetic alterations are seen in 

pediatric and adult populations.[2]  For example, presence of the Philadelphia chromosome (Ph) 

in ALL blasts is a known high-risk feature.[2, 4]  Approximately 4% of pediatric ALL cases will be 

Ph+ ALL, while this fraction grows to 25% of adult ALL cases.[4]  While this can explain some of 
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the differences in the overall survival of pediatric and adult ALL, even within subsets of patients 

with the same cytogenetics, adults continue to have poorer prognosis than children.[2]  Further 

investigation is needed to explain the differences in outcomes between children and adults so 

that treatment for adults with ALL may be improved. 

 Even as children with ALL have better disease outcomes than adults with ALL, there are 

subgroups within pediatric ALL that have poor prognosis.  One subgroup that is associated with 

poor prognosis is composed of patients harboring t(4;11) (MLL-AF4) in their leukemic blasts.[4]  

The estimated 5 year event-free survival for these pediatric patients is 10-35%.[4]  As was 

stated previously, the presence of the Philadelphia chromosome in ALL also places patients at 

high risk for relapse and poor disease outcomes.  The estimated 5 year event-free survival for 

children with Ph+ ALL is 20-40%.[4]  While the Abl kinase inhibitor, imatinib, was designed to 

target high Abl kinase activity characteristic of this particular subgroup and has been used with 

success in the treatment of chronic myelogenous leukemia, which also has high Abl kinase 

activity because of the Philadelphia chromosome, it has met with limited success in the 

treatment of ALL.[2]  Further investigations are needed to understand the biology behind the 

aggressive nature of leukemia with t(9;22) and t(4;11) in order to design treatment strategies 

that can improve patient survival. 

 Just as there are challenges still to be met in improving the treatment of ALL overall, 

there are still many areas in the prevention of CNS leukemia that must be addressed to improve 

the outcomes of patients with ALL.  Every year in the United States, 1500 pediatric patients 

become long term survivors of ALL.[4]  Many of these children will have received CNS-directed 

prophylaxis and are therefore at risk to develop treatment related sequelae.  Stated previously, 

these effects can include seizures, neurocognitive deficits, and endocrinopathies that can 

produce growth retardation, precocious puberty, and obesity.[17, 18]  Recognizing that a 

growing number of developing children are at risk for being impacted by these adverse effects 

highlights the need to improve treatment directed at the CNS. 
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 While a better understanding of how ALL cells interact with the bone marrow 

microenvironment is leading towards better strategies to prevent MRD following induction 

therapy, there is a paucity of literature reporting on the mechanisms through which ALL cells 

migrate into the CNS and how they may interact with cellular constituents of the CNS to evade 

treatment in the unique sanctuary site.  As was discussed in Chapter I, many of the ways in 

which immune cells interact with endothelial cells to extravasate are derived from models of 

inflammation.[28, 29]  These same models also demonstrate how the survival of B-lymphocytes 

inside the CNS under autoinflammatory conditions is impacted by resident supportive cells of 

the CNS.[30]  While these models are useful for informing our hypotheses, and the hypotheses 

of the current work,  more investigations are needed into the mechanism that ALL blasts 

specifically use to enter and survive in the CNS. 

 To this end, the overall goals of the current body of work were to understand how two 

proteins, VE-cadherin and PECAM-1, uniquely, and unexpectedly, expressed by ALL cells 

altered the ability of ALL cells to interact with human brain derived microvascular endothelial 

cells and to understand how cellular constituents of the subarachnoid space of the CNS altered 

ALL cell response to chemotherapeutics routinely used in the prophylaxis of CNS leukemia.  In 

Chapter 2, we investigated the interaction between ALL and HBMEnd, an in vitro model of the 

BBB, to understand the functional significance of coincident VE-cadherin and PECAM-1 

expression by ALL.  Based on our observation that induction of adhesion molecules that are 

typically increased subsequent to inflammation did not occur following interaction of ALL cells 

with endothelial cells, we explored adhesion molecules expressed constitutively by ALL cells 

that could enhance leukemic cell adhesion to HBMEnd.  Evaluation of primary ALL samples, 

including leukemic cells isolated from CSF, demonstrated that VE-cadherin and PECAM-1 are 

co-expressed on the tumor cell surface.   

Based on the classical role of VE- cadherin and PECAM-1 mediating homotypic 

interactions between adjacent endothelial cells, we hypothesized that expression of these two 
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proteins by ALL cells would enhance their interaction with HBMEnd.  Using lentiviral-mediated 

expression of these two proteins and neutralization of protein function with specific antibodies, 

we demonstrated expression of VE-cadherin and PECAM-1 by ALL enhanced the adhesion of 

ALL to HBMEnd, while expression of PECAM-1 enhanced ALL adhesion to, and migration 

through, HBMEnd.  This work demonstrates how the expression of proteins unique to ALL cells 

positions the tumor cells to interact with brain microvascular endothelial cells.  The in vitro 

model system employed in this study, while not as complex as the in vivo CNS, provides a 

spring board from which to investigate the interactions of ALL cells with other types of 

endothelial cells, including endothelial cells from the bone marrow, fenestrated endothelial cells 

of the choroid plexus, and endothelial cells of the meningeal blood vessels.  We have utilized 

this model system to investigate the interaction of ALL cells with bone marrow derived 

endothelial cells that compose the vascular niche.  Similar to the results seen with VE-cadherin 

and PECAM-1 mediating the interaction between ALL cells and HBMEnd, we also observed 

increased adhesion of ALL cells to bone marrow endothelial cells when VE-cadherin or PECAM-

1 are exogenously expressed (data not shown).  Continued work is needed to improve our 

molecular toolbox for this project.  We continue to work with lentiviral systems to produce ALL 

cell lines that exogenously express both VE-cadherin and PECAM-1 and lentiviral based RNAi 

delivery to more effectively inhibit both endogenously expressed proteins for future analyses.  

These will provide useful tools to further elucidate the importance of VE-cadherin and PECAM-1 

as our models become more complex. 

As we gain understanding of the importance of VE-cadherin and PECAM-1 to mediating 

ALL cell interaction with endothelial cells at diverse anatomic locations, we could begin to think 

about how these proteins could become therapeutic targets.  Antibody based therapies are a 

logical starting point to exploit VE-cadherin and PECAM-1 expression by ALL cells.  

Systemically administered antibodies would be truly prophylactic against CNS invasion as they 

could neutralize ALL cell VE-cadherin and PECAM-1, preventing ALL cell entry into the CNS, 
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without the antibodies themselves entering the CNS as they would be unlikely to cross the BBB.  

Clinical trials continue for compounds that have effects on VE-cadherin.  One such compound, 

combrestatin-A4-phosphate (CA4P), is a microtubule destabilizing agent used as an 

antiangiogenic therapy as it targets endothelial cells of developing vasculature.[31, 32]  Though 

it does not target VE-cadherin specifically, Rafii and colleagues have demonstrated that CA4P 

can inhibit leukemic cell survival.[31]  This effect seems to be mediated in part through a 

pathway including VE-cadherin, β-catenin, and Akt.  As is now appreciated, angiogenesis 

occurs in the bone marrow of patients with leukemia.[33-35]  Combining anti-angiogenic 

therapies for use in their historical contexts of preventing new blood vessel formation with novel 

functions, such as disruption of VE-cadherin expressed by leukemic cells, could provide useful 

therapies to prevent ALL cell-endothelial cell interactions.  Prevention of these interactions could 

have profound impact on the ability of ALL cells to draw on support offered by the vascular 

niche in the bone marrow and on the ability of ALL cells to adhere to and migrate through 

vascular barriers. 

In Chapter 3, we investigated the contribution of astrocytes, choroid plexus epithelial 

cells, and meningeal cells to alterations in leukemic cell survival during treatment with 

chemotherapeutics routinely used for the prophylaxis of CNS involvement in ALL.  As these 

cells from the CNS have been documented to express soluble factors and adhesion molecules 

similar to cells resident in the bone marrow that have been shown to enhance the survival of 

ALL cells following chemotherapy treatment, we hypothesized that culture of ALL cells with 

cellular constituents of the subarachnoid space would promote ALL survival following exposure 

to cytarabine, dexamethasone, and methotrexate.  We demonstrated that ALL cells migrate 

towards chemotactic stimuli secreted by astrocytes, choroid plexus epithelial cells, and 

meningeal cells.  Additionally, we documented the physical interaction of ALL cells with these 

three CNS-derived cell types. Finally, through the use of in vitro co-culture models, we showed 

that meningeal cells, choroid plexus epithelial cells, and astrocytes confer protection to ALL 
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cells from chemotherapy-induced cell death using drugs typically found in CNS prophylactic 

regimens.  While in vitro models have been used to understand the impact of 

microenvironments, such as is in the bone marrow, on ALL survival during chemotherapy 

exposure; to our knowledge, this is the first report documenting protection of ALL cell lines by 

cellular elements of the subarachnoid space within the CNS from Ara-C, DEX, and MTX.   

This study provides a foundation from which to build investigations to elucidate the 

soluble factors and adhesion-mediated signaling events that enhance ALL survival in the CNS.  

While the exact mediators of this protection remain to be determined, one soluble factor that is 

secreted by all three cellular elements we examined, and that has also been documented to 

protect ALL cells in the bone marrow, is CXCL12 (SDF-1).[13, 36]  This chemokine, which binds 

CXCR4 on the surface of some normal and malignant hematopoietic cells, has been shown to 

promote homing of ALL cells to the bone marrow and has been shown to promote the survival 

of ALL cells through activating PI3K/Akt and MAPK signaling pathways.[13, 37]  Speculation 

that SDF-1 may play a role in mediating the protection from chemotherapeutics observed when 

ALL cells were co-cultured with cellular elements of the CNS in our study is enticing as a 

CXCR4 antagonist, AMD3100, is already used clinically to block CXCL12/CXCR4 interactions to 

aid in mobilization of CD34+ cells from the bone marrow.  In future experiments, it would be 

prudent to include not only treatment of the leukemia cells and leukemia cell co-cultures with the 

prophylactic chemotherapeutics, but also to include treatment groups that included AMD3100 to 

observe the effects on the protection offered by the cellular elements of the CNS.  This 

straightforward experiment could shed great light on the factors mediating protection of ALL 

cells in the CNS and provide rationale to begin to study AMD3100 in the setting of prophylactic 

treatment of CNS leukemia. 

In conclusion, while great strides have been made in the treatment of ALL, there remain 

certain patient populations for whom treatment is more difficult.  These include adults, patients 

with high-risk cytogenetics, and patients with CNS infiltration of leukemic blasts.  Diligent 
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enrollment of patients in well designed clinical trials has facilitated the improvement in treatment 

outcomes for patients with ALL by identifying risk-factors associated with aggressive disease 

and CNS involvement and by determining the best combinations of chemotherapies to use in 

modern regimens.  These efforts must continue to synergize with information translated from 

basic science research regarding the basic biology of leukemia including its genesis and how it 

interacts with elements of unique microenvironment sanctuary sites to invade and to survive in 

sensitive anatomic locations such as the CNS. 
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